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Parr 1.
Introdaction.

§ 1. Since the fundamental discoveries of WEIERSTRASS, much progress has been
made with regard to uniform transcendental functions; but the advances of modern
mathematics appear to have included no attempt formally to classify and investigate
the properties of natural groups of such functions.

Consider, for instance, the case of transcendental integral functions which admit
one possible essential singularity at infinity. They form the most simple class of
uniform functions of a single variable, and yet of them we know, broadly speaking,
the nature of but four types :—

(1) The exponential function, with which are associated circular and (rectangular)
hyperbolic functions ;

(2) The gamma functions ;

(3) The elliptic functions and functions derived therefrom, such as the theta
functions and ArprLL’S generalisation of the Kulerian functions ;

(4) Certain functions which arise in physical problems (such as «™J, (x)) whose
properties have been extensively investigated for physical purposes.

There are, of course, isolated examples of other types of functions; yet, broadly
speaking, except for algebraic polynomials, the four types just mentioned comprise
the extent of our knowledge.

§ 2. Take now an example of the first type of function.

sinh 7 «/ 2
We may write — v = 1 [ + 1, and hence we have
n=1 | n
A
ﬁ I_] + 2 L;‘Irf;‘ — (7 R
myl+ - ==
1L 7n? Qrat

go that when |z

18 very large, the approximate value of 1I [1 + o] is (2m)~1z~h e,
< . i | ) )
o long as — 7 < arg z < .
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MR. E. W. BARNES ON INTEGRAL FUNCTIONS. 415

That is to say, for all points in the region of z = « which are not at a finite
distance from the zeros of #~'27% sinh 7 /2, this function admits what we may call
the asymptotic expansion (27)~'z™ ¢, and a similar property is true of all functions
of the first class.

§ 8. Consider next the second class of functions.

We have as the simplest example

1 e 2\ _F
Tt e Y2 ] —te al.
= ¢ 41;[{<1+ n’/(/ :}

I(z)

=~ |

Since the time of STIRLING it has been known that, when z is a large positive’

integer,
o § ) e !

T (Z) —_ (217); 7t $=0 2s+1.95+2 3727*“";1

approximately-—the terms neglected involving exponentials of a lower order than
those retained.

In 1889 SrtrenTsEs® proved that this asymptotic expansion is valid for all values
of z in the region of z = «, except those which are at a finite distance from the
zeros of T71(z).

By a different method it is possible to establish both Stizrrses’ result and the
analogous theorem that the double gamma functiont

S v §Z+;~2. o ® / 2 "i'*‘ﬁ‘ﬁ‘
')y =" e o [/] + «->@ atiw

my =0 i, =0 0
in which Q = m e, + mym,, admits the asymptotic expansion

110 (2) 0211-,,(m+m’) 2571 (0) - ( ) ’
g O 900) (o — 2 (0 )
“~ 2 ~

w

~

+ zle‘Z)(()) + z

) 141 & (=) 98 n41(0)
le (0) {1 + 2} + ;nél m (m + ]_)zm *

This expansion was shown to be valid for all points in the plane of the complex
variable z near infinity, which are not at a finite distance from the zeros of the
integral function I';" (2).

A similar theorem is true for multiple gamma functions.

§ 4. As vegards the elliptic functions and the integral functions associated with
them which constitute the third type, there are no points in the neighbourhood of
infinity which are not at a finite distance from the zeros of the function and no
asymptotic approximations are known to exist.

* ¢Liouville’ (4), vol. 5, pp. 425-444.
T See a paper by the Author, ¢ Phil. Trans.,” A, vol. 196, pp. 265-387.
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416 MR. E. W. BARNES ON INTEGRAL FUNCTIONS.

§ 5. The best known example of the fourth type is BesseL’s function

I, ()= S
() = ST+ DD (et + 1)
It is evident that z=*J, () is a uniform integral tfunction.

The investigations of Porsson,® Sroxus,t Lirscuirz,| and Jorpan,§ have finally
led to a rigorous demonstration by the latter that asymptotically, when n is real,

27, (2) = M 2 ==t gos { z = (n -+ %) 7; }, when 1§ (z)\is positive,

™

>7‘_‘)Jﬂ> T 1 . -
and z27*J, (2) = /\/‘ ¢ G b o {,4 + (43, } when R (z) is negative.

Vi

The complexity of this result is reduced by the transformation — 22 =t or z = 1 4/1,

: : —u P z
Wthh gives Z JIL (4) - 2 92p.+nI‘(/b + 1)]:‘(#/ + 0 4 l)

, an integral function of ¢.

And now we have for the asymptotic value of z=*J, (z) the unique expression

L1l 1 ()

@m)=r = et

which 1s valid for all values of arg ¢ between — =« and .

This shows at once that z=*J, (), qui function of ¢, has no imaginary roots which
are not at a finite distance from the negative part of the real axis. In point of
fact, these roots are known to be real and negative when n > — 1. Hence the
asymptotic expansion for
1

o2 D+ D) D+ 0+ 1)

=23, ((,m V1) = 2

is valid for all points in the neighbourhood of ¢ = o except those which are at
a finite distance from the zeros of the function.

§ 6. The question now forces itself upon us:—* Do all wntegral functions of a
single variable z admit asymptotic approximations in the domain of 2=, which are
valid for all pounts but those which are in the vinmeduale vicinity of the zeros of the
Junctions ?

* PoissoN, ‘Journal de ’Ecole Polyt.,” vol 19, 1823, pp. 549 ¢l seq.

T Stoxes, ‘Camb. Phil. Trans.,” vol. 9, 1856, pp. 166 ¢f seq.

1 LipscuITz, ¢ Crelle,” vol. 56, pp. 189 ef seq.

§ JOrRDAN, ‘Cours d’Analyse,” 1896, vol. 3, pp. 254-274.

| When n is negative and between m and mm + 1 in absolute value, there may be a finite number (2m)
of imaginary roots of z%J,, (), but these are not associated with the essential singularity. C¢J. Mac-
DONALD, ‘ Pro¢ Lond. Math. Soc.,” vol. 29, pp. 575-584.
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The present memoir is devoted to the answer of this question ; and the question is
closely connected with other subjects of enquiry.

§ 7. Soon after WEIERSTRASS, in 1876, published his great theorem relating to the
formation of uniform functions with assigned zeros, LAGUERRE remarked the funda-
mental nature of the number of terms in the exponential function which is necessary
to form the “prime factor.” The number was by him termed the “genre” of the
function ; and the questions at once arose :—

“Is the genre of a function equal to the genre of its derivative ?”
“Is the sum of two functions of the same or different genre a function of genre
equal to the common genre or equal to the larger genre respectively ¢’

§ 8. Again, by RoLLE’s Theorem it is known that the real roots of any algebraic
equation, ¢ () = 0, separate, and are separated by those of ¢ (x) = 0.

Is this true when ¢ () is an integral function ?

Closely connected with this enquiry is the further one :—If the roots of ¢ (x) =
are all real, are those of ¢'(x) = 0 real, in the case when ¢ () is any integral
function ?”

Again, it is evident that the more quickly the zeros of an integral function increase,
the more quickly will the TAvLOR’s series for the function converge. Can any con-
nection be discovered between the magmtude of the coefficients of the TAYLOR's
series and the expression for the zeros of the function it represents? In other words,
it we are given the general term of the TAYLOR'S series for an integral function, can
we approximately determine the nature of its zeros ¥

All these questions fundamentally depend on the asymptotic approximation for the
function. The nature of the latter serves to classify the nature of the integral
Sunction.

History of the subject.

§9. As already remarked, Werersrrasst founded the theory of transcendental
integral functions by constructing functions with any assigned zeros. LAGUERRE}
invented the term ¢ genre” to denote the number of terms in the exponential
associated in the prime-factor—and for functions of genre 0 and 1 proved that the
real roots of the transcendental integral function ¢ (x) = 0 are separated by those of
# () = o.

He also proved, as HermITE§ had previously proved for »IT(‘S that if the roots of

¢ (x) = 0 are real, those of ¢’ () = 0 are real, provided ¢ () is of «“ genre” 0 or 1.

* This question is not formally considered in the present memoir, as the expansions which are obtained,
although they will give closer inequalities than any hitherto published, must be still further developed
before inequality can be replaced by that asymptotic equahty which alone would be a complete solution
of the problem.

T WEIERSTRASS, ¢ Zur Theorie der eindeutigen analyt. Funct.,” ¢ Gesamm. Werke,” vol. 2. ,

1 LAGUERRE, ‘ Compt. Rend.,” vol. 94, pp. 160-163, 635-638 ; vol. 95, pp. 828-831 ; vol. 98, pp. 79-81.

§ HerMiTg, ¢ Crelle,” vol. 90, p. 336.

VOL. CXCIX.——A. 3 H
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418 MR. E. W. BARNES ON INTEGRAL FUNCTIONS.

His principal proposition is, ¢ If, as z tends to oo, a very great value of can be

found for which the limit of

Z

0 ¢
¢ ()

tends uniformly to the value zero, then ¢ (z) is of genre #.’

2

Shortly afterwards, PorNcari™ gave further criteria for the genre of a function, and
made the important step of pointing out that the near connection between the genre
of the function and its behaviour near infinity lead to an approximate determination
of the magnitude of the general term of the TAvLOR's series for the function.

After a succession of notes by Cesaro,T Vivantif (who proved that the derivative
of a function is of the same genre as the function itself), and Hurmire§ the subject
remained in abeyance until HapaMArD,| in a memoir crowned by the French
Academy, gave a valuable extension of Poincanri’s vesults.

The latter had proved that in the Tavror's series for an integral function of
genre K, the coefficient of & multiplied by the (I 4 1)* root of m ! tends to zero, as m
indefinitely increases.

. . . 1AL -
HapaMarD proved that, if the coefficient of = is less than <—7-—l A, the function is, in
mol

general, of genre less than . He also showed that when the coefficient of & is of
1\L . . X . ; ; .. .

order <~'~-—-‘ », where N is not an integer, the function represented by the series i of

m «
/

genre I, designating by (If 4 1) the integer immediately superior to A,

Finally, Borer,f continuing Hapamarp’s researches, introduced a more precise
notion than that of genre (1 § 12), and attacked the difficult problem of functions of
infinite order whose convergence is very slow.

[Note added March 20th, 1902.] In his recent text-book, “ Lecons sur les
Fonctions Entieres,”** BorEL has given a valuable préeis of our present knowledge of
integral functions. And a paper by MELLINTT has recently come to my notice, which
should be carefully read by all interested in the subjects with which the present
memoir deals. _

§ 10. The present contribution to this interesting theory differs from previous
investigations in that it is shown to be possible to substitute actual asymptotic
equalities for the inequalities which have been previously obtained.{}

* PoINCARE, ¢ Bull. des Sciences Math.,” vol. 15, pp. 136-144.

CusAro, ¢ Compt. Rend.,” vol. 99, pp. 26, 27.

VivanTi, ¢ Battaglini,” vol. 22, pp. 243-261, and 378-380 ; vol. 23, pp. 96-122; vol. 26, pp. 303-314.
HEerMITE, ‘ Battaglini,” vol. 22, pp. 191-200.

|| HapAMARD, ¢ Liouville’ (4), vol. 9, pp. 171-215.

€] BorEL, ¢ Acta Mathematica,” vol. 20, pp. 357-396.

*% Paris, Gauthier-Villars, 1900.

1 MELLIN, ¢ Acta Societatis Fennicae,” 1900, vol. 29, No. 4

[11 MeLLIN has obtained results of this nature. ]

LY bt —i-
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The memoir deals almost exclusively with simple integral functions of finite or zero
order (vide the definitions of the succeeding paragraphs.)

I reserve the consideration of functions of infinite order, and also the results which
I have obtained in connection with functions of double or multiple sequence. The
latter form a self-contained theory, which is a natural extension of the investigations
of the present memoir. The consideration of the asymptotic expansion of integral
functions defined by a TAYLOR'S series is also postponed, although certain noteworthy
extensions of HADAMARD'S results can be at once deduced from the present theory.*

My thanks are due to Professor Forsyrm for the kind way in which he has
supplied me with references and criticism.

The Classification of Integral Functions.

§ 11. An 4ntegral function we define to be a uniform transcendental function with
no poles, and a single essential singularity at infinity. [Sometimes it is convenient
to include algebraic polynomials.] An integral function is thus the same as a
holomorphic function, to use the translation of CAUCHY'S name; it is the equivalent
of the French “ fonction entiére,” and the German ° ganze Funktion.” Every mero-
morphic function can be expressed as the quotient of two integral functions.

The most simple integral function can be written in the form

pa—l ,
1= 2)etis
()

©
8H (2) I

n=1

’

where I (z) is an integral function of z, where the zero a, depends solely upon » and
certain definite constants, and where the law of dependence of «, upon » is the
same for all zeros. Such a function we call a simple integral function with a single
sequence of non-repeated zeros. The law of dependence may be broken for a finite
number of arbitrary zeros in the finite part of the plane. The existence of such zeros
is equivalent to the multiplication of the transcendental function by an arbitrary
polynomial coupled possibly with an exponential function of the type €@, where
p(z) is another algebraic polynomial. Such terms do not substantially alter the
character of the function.

Functions of the type e"®, where H (z) is an integral function, belong to a class
apart. The integral function which we consider we shall suppose to be deprived of
such extraneous factor.

* The present memoir was largely written during the summer of the year 1898. In consequence, and
in spite of rigerous revision, results may sometimes appear to be tacitly claimed as new which have since
been published in papers to which reference is made in connection with other investigations of the
memoir.

3 " 2
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'l'he standard reduced simple integral function with a single simple sequence of
non-repeated zeros is thus

=1
P" 1

‘ = s 17y
it | (1= 2ot ()
ﬂ'zz/

n=1

We shall call this briefly a semple integral function.

§ 12. The quantity p, is the smallest integer such that the series §1 a; s
absolutely convergent. When the convergency of the series can be as/;;lred by
taking for p, some number p independent of n, the function is said to be of finite
genre® p. In this case, if p is a real positive quantity such that S

et
7]

n=

® 1 . : . .
converges and X AGE diverges, however small the real positive quantity e be,
n=1 n .

the function is said to be of ordert p, and p is called the convergence-exponentf of the
. 1 1 1 . . . .
SUIes -, ., It is sufficient that the function @, depends uniquely
o oy
upon 7 ; if we put a, = ¢ (n), the quantity ¢ () is not necessarily a uniform function :

it may be a definite value of some multiform function of n.
. . . . . . ® 1
§ 13. When there is no finite quantity p which will make the series % Tanl?
n=1 |Un
converge, the function is said to be of infinite genre and infinite order. The con-
vergency of the series can, as WEIRRsTRASS first showed, always be obtained by

taking p = n. A theorem due to Cavcmy proves this at once, since

! % 1
s = 2 igran s and the
1 \anllogn n=1 %IOEI%I ’ ’
latter series is convergent, since |, | increases indefinitely with ».
But a smaller number still is a sufficient value for p, namely, the greatest integer
. . (1-+e)logmn . Yy . ,
contained in log] T , where ¢ is any positive quantity as small as we please.§
og | a, ! ¢
The great difficulty in the theory of asymptotic approximations for functions of
infinite order consists in finding the minimum value of p. 1 do not intend to consider

It is equally sufficient to take p = logn, for then 3

il

such functions in the present memoir. Functions of the type ¢'@, where H (z) is
holomorphie, are of course integral functions of infinite ovder.

§ 14. Tt is evident that if «, does not increase more quickly than some (possibly
fractional) power of n, however small, the associated integral fanction will be of

* LLAGUERRE, ¢ Comptes Rendus,” vol. 94 ; ¢ (Fuvres,” vol. 1, pp. 167 ¢f seq.

1 Bonrer, ¢ Acta Mathematica,” vol. 20, p. 360.

£ vON SCHAPER, ‘ Hadamard’schen Functionen,” p. 35 ; Borgr, ¢ Fonctions Entieres,” p. 18
§ BorgrL, ¢ Acta Mathematica, vol. 20, p. 360.
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infinite order. On the other hand, if @, increases faster than any algebraic power of
n, however large, provided it be not actually infinite, the function is of zero order.
In other words, functions whose order is “finite both ways,” to use DE MoRGANS
phrase, have zeros which are to a first approximation algebraic.

The zeros of the function are said to be actually algebraic when they are given by

¢ C,
1, == P L —= .o
= Golt [1 + ner + Pz + . ]’
when p is of course positive and rational, the ¢’s are constants, and p,, p,, . . . are
in ascending order of magnitude.
It is now evident that we can form a scale of integral functions; thus, in between
functions with the algebraic zeros

ca, =" and «,=n” where p,> p,

will come functions with zeros like

nlogn, nflog n.log log i and so on.*
g g 108

Such functions we call simple integral functions of finite order with a single
simple transcendental sequence of zeros; or, in brief, functions of transcendental
sequence.

Thus -
H 1 + e
n=1 (nlogn)? |
i$ a function of transcendental sequence of order } and genre zero.

§ 15. Functions of zero order, which must always be of transcendental sequence,

can be classified in the same way. The most simple is 11 [1 + ~z——J.

n=1 ¢
Then we consider functions whose zeros are obtained by multiplying ¢* by an
algebraic function of n. The next step is obviously to introduce intermediate
functions by means of logarithmic terms, and so on. Then we introduce functions
formed from sets of zeros of still more emphatic convergence, such as

i [1 + (}
The range is obviously limitless.

§ 16. It is worth noticing that the density of the zeros along the (possibly curved)
line on which they lie, decreases with the increase of the convergence of the function,
The zeros of the higher functions of zero order have therefore a density which
beconies less as we go higher. The conception of the density of a function is perhaps
the most easy way of intuitively classifying it.

* The analogy of the DE MorcAN and BERTRAND scales of convergence is almost too obvious to need

mention.
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The investigation of the character at infinity of the zero-lines of simple integral
functions belongs to the theory of functions of real variables. I do not propose to
undertake it here. It is, however, evident that such lines cannot curl round
infinity when they belong to functions of finite non-zero order with algebraic zeros :*
they approach this point in a line which becomes ultimately straight.

§ 17. A function with a finite number of simple sequences of zeros can evidently
be built up of a number of functions, each with a single sequence of zeros.

The function will thus have a finite number of lines of zeros tending to infinity.

When the zeros of a function of order p are all of the same character and form m
lines symmetrically ranged round the origin, the function will be equal to a function

e P
of { (= 2") of order —.

Thus a function of order % with the sequences

= pn?
a, = on® ;where o® = 1,

— oin? J

is given by the product II [1 e ;z“] which, considered as a function of 2%, is of order L.
n=1

§ 18. A function, each of whose zeros is repeated a definite number of times,
k (say), is substantially the k™
repeated zeros.

When the at" zero of a function of simple sequence is repeated a number of times

power of a function with the same sequences of non-

dependent upon n, we call the function in brief a simple repeated function. We
can obviously have repeated functions with any number of sequences of zeros. We
may, as before, limit our consideration to a function with a single sequence of zeros ;
such a one may be written

Pn,:‘l 1

F (z> - ﬁ <1 _{'_ ﬁ_>’h‘ (ﬁM’L mi] it (~al)
=t Iy

/

The quantity w, must, in order that the repetition of the zero may not be meaning-
less, be an integral number depending upon % ; but, if we take the principal values
of the ensuing expressions, it is evident that we may get a generalised repeated
function by regarding u, as a general function of 7.

) By .
The quantity p, must be so chosen that = - ;j is convergent.
ne=1 0y -

* This statement does not deny that they can curl a finite number of times in the finite part of the
plane. ‘ v
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17 .
o . o 1
| =0; that is to say, @,"m,”™ must

La"_|

We must then, in general, have L
N=ox

increase indefinitely with n. We can no longer assign log # as a value for p,, which
is always sufficient to ensure convergence, as was the case with simple non-repeated
functions.

§ 19. Tt is evident that we may regard the value of p for which, e being a small
real positive quantity,
2 & T
3 is convergent and % =,_, is divergent

_p-l-s q P€
n=1 Uy n=1 Uy

as the order of the repeated function. When p 18 an integer, the order is equal to
the genre : in other cases the genre is the integer next greater than p.

If the order is not infinite, and the sequence of zeros to a first approximation
algebraic, u, must be algebraic also.

Suppose that

Lt &

P o
U= n Y=o

= 1 and 1Lt iﬁ—”: 1,
then, we shall have for the determination of p,, pp, — ¢ > 1, or p, > (o -+ 1)/p.

Repeated functions of infinite order will not be considered in the present memoir.

§ 20. Hitherto we have limited ourselves to integral functions which possess a
finite number of simple sequences of zeros. But we have not thus exhausted the
category of integral functions. Instead of the typical zero being a definite function
“of the single number necessary to define its position in the series to which it belongs,
it may be a function of two or more numbers and belong to a doubly or multiply
infinite sequence. In such case we say that the function 1s a double or multiple
integral function.

Thus the Weierstrassian o function is a double integral function, and another
function of the same category is the double-gamma function to which reference has
been made in § 3. ‘

The multiple integral functions always have ultimately a lacunary space® in the
region near infinity. In the case of WEIERSTRASY o function, this lacunary space
covers the whole region near infinity ; for the double-gamma function this space lies
between the negative directions of the axes of o, and o,

By a well-known theorem due to Jacosr,t functions of treble or higher sequence
with periodic zeros cannot exist. This theorem may be extended, and we may prove .
that there must, in functions whose sequence 1s greater than double, be such relations

* The zeros will, of course, only crowd together indefinitely on the equivalent NEUMANN sphere. The
possibility, or otherwise, of summable divergent expansions is the reason for the nomenclature.

T ¢ Ges. Werke,” vol. 2, pp. 27-32.
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among the parameters that the region near infinity is not ultimately a lacunary
space. The parameters are, of course, the constants which enter into the expression
of the general zero in the form

Aoty g+ » o =P (0, Ny, o L)

Such functions have been scarcely considered in analysis. The nP¢ gamma function
is the most simple example which it is possible to give. The theory requires develop-
ment, since from quotients of multiple integral functions can be built up the general
solution of a linear difference equation.

It is to be noticed that, by the coalescence of the parameters, multiple integral
functions give rise to functions of lower sequence with repeated zeros. Thus the
function™

arises from the double gamma function when the parameters o, and w, each become
equal to unity.

The separation of multiple functions into functions with repeated and non-repeated
zeros and their classification would be carried out on parallel lines to the process
adopted for simple functions. ~As, however, detailed developments of the asymptotic
expansions of such functions are not investigated in the present memoir, I do not
intend to consider such functions further.

It has been already observed that by the substitution of z” (in integral) for z, we
derive from any simple integral function a function with m times as many sequences
of zeros. The substitution of ¢ for z will transform a simple function into one of
double sequence. [An example of this is given subsequently (§ 62), where LAMBERTS
function is derived from one of simple sequence.| By transformations of greater
complexity we may evidently construct functions of limitless range.

§ 21. We are still far from exhausting the category of integral functions. For
instance, we may have ring functions, that is to say, functions whose zeros are
situated on concentric circles : the number of zeros on the n' circle depending upon 7.

®© 3 x(
We can readily see that such a function is given by the product 11 {:1 - { ¢)Zl)}x )],

where x () is a function of n which is equal to aun integer for all values of 7, and
where, if y (n) = 7, inversely n = ¢ (), and

LVl = .

For, the product will converge with

al-4o

* See a paper by the author, ¢ Quart. Journ. Math.,’ vol. 31, pp. 264 ¢/ seq.



http://rsta.royalsocietypublishing.org/

A
N
=

[ Q\;

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

\

3

y i
///

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

MR. E. W. BARNES ON INTEGRAL FUNCTIONS. 425

the first £ — 1 terms for which |z| = ¢ () being omitted. Thus it cohverges with

B © w 1 2 mx(a
S ]
XP L ’:ILZ‘—‘I nEL' m ¢(7l)}

The modulus of the term inside the bracket is less than

gl e el
m=1 =t | [P )] A=k oy i x (4
' b (n)
2 xm
Now 1 — ¢T(773| (n=1F k4 1... %) has for its greatest value a finite positive
quantity A (say). The product then converges if ngk!;i:%;) < converges, which is

ensured by the condition assigned at the outset.

The function whose existence has thus been established has x (1) zeros on a circle
of radius | (n)|. If, since the assigned condition makes the order of ¢ (n) greater
than that of x (n), the zeros will ultimately be separated by arcs of infinite length.

§ 22. A lDittle ingenuity will enable us to construct other functions of types
innumerable, among them what BorrL has called functions “a crowssance @rré-
guliere.”*  The survey gradually forces upon us the conclusion that we cannot
expect to find any general law as to the behaviour of all integral functions near their
essential singularity which is not a disguised truism.t MM. HapaMArD] and BoreL
have given laws relating to the increase of all integral functions. It seems to me that
such laws must be limited to particular classes of functions, and that such delimitation
cannot be stated too explicitly. Consequently in this memoir I have taken the most
simple functions and have endeavoured to study in detail their behaviour near the
essential singularity, for I believe that by such means the progress made will be sure,
if slow.

* BorEL, [‘Fonctions Entitres,” Note ITL], gives an example of such a function in the form of a
TAYLOR’S series.

T Such a term I should apply to M. BoREL’S law ““the maximum value of a function is equal to the
” Tor this law is an immediate
consequence of the possibility of asymptotic expansions (see Part I1. of this memoir).

1 OsGooD (¢ Bulletin of the American Math. Soc.,’ Nov., 1898, note, p. 80) states that the analysis used
to prove HADAMARD’S most general law requires revision. And it is to be noted that HADAMARD

k

o
m

inverse of its minimum value on an infinite number of circles at infinity.

(‘Liouville,” 4 ser., t. 9, p. 173) assumes that ¢ (m) is continuous, increasing, and such that Lip (m) +

constantly increases ultimately.

VOL. CXCIX.

Al 31
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Panr 1L

The Theory of Dhvergent Series.

©

§ 23. The development of the theory of divergent series is an interesting instance
of the progress of mathematical thought. The beginning was purely arithmetic: to

>

find some approximation to the value of n !, where n is a very large integer.® In the

result it appeared that the value of log n | could be more and more nearly calculated by
adding on successive terms of a series proceeding by powers of o The error is of the
: 7

order of magnitude of the term of the series next after the one at which we stop.
And, most important fact of all, the series is divergent.

If n ! be replaced by I' (n -+ 1), a similar result can be obtained, which holds for all
real positive values of n.

Finally, there comes the enquiry as to what meaning, if any, can be attached to the
equality in the case in which n is any complex quantity.

Other approximations undergo the same process of development, so that it becomes
necessary to try and construct a formal theory.

What we may call the arithmetic theory has been given by PormNcari,T for the
case in which all the quantities involved are real :—a restriction which the author
subsequently assumes to be unnecessary.

For the more extended case, when z is any complex quantity, we may say that the

v,
Gy

. . . . . :
divergent series ¢y -+ = -} ... -+ " ... of which the sum of the first (n - 1)
2

zn
terms in S,, will, when |z]| is very large, be an asymptotic expansion for a function
J (#) if the expression |2* (J —S,)

Thus, if z be sufficiently large,

tends to zero, as z tends to infinity.

2" (J — 8,)| < ¢ where ¢ is very small.

The error J — S, = ¢/z* committed in taking for the function J the first n+ 1
terms of the series has a modulus which is infinitely smaller than the modulus of the
error J — 8, | = a, - ¢/z" obtained by taking only the first n terms, for |a,| is in
general finite, and |e| is very small.

In view of subsequent results, it proves necessary to define the equality of the
function and divergent series for values of z which lie along some definite line tending
to infinity. We do not then assume that the expansion is possible all round the
point z = oo.

It will be sufficient to recapitulate the results which Porncari obtains.

We may multiply two asymptotic series together by the same rules as we should
apply to absolutely convergent series.

* Stirling, « Methodus Differentialis ’ (1730).
T ¢ Acta Mathematica,” 8, pp. 295-344 ; ¢ Mécanique Céleste,” vol. 2, pp. 12-14.
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In particular, we may raise an asymptotic series to any finite power, and it will
then represent the corresponding power of the function represented by the original
series.

The term-by-term integral of an asymptotic series is equal to the integral of the
function which it represents : in brief, we may integrate an asymptotic series.

In general, we may not differentiate an asymptotic equality.

[Nevertheless, we may differentiate most of the expansions which arise naturally
in analysis, and are not constructed artificially. ]

Similarly, if an asymptotic equality involves an arbitrary parameter, we may not
in general (but we may fairly safely in practice) differentiate with respect to that
parameter.

Such are the main propositions of the arithmetic theory of asymptotic expansions.

The difficulties inherent in the theory are obvious when we attempt its application.
We have, in all cases, to investigate a superior limit to the remainder of the series
after the first (n 4 1) terms have been taken; and, to do this, we must have
command, even for the most simple cases, of analytical processes of great complexity
and power.

§ 24. We proceed then to consider these series from the function-theoretic point of
view.

That is to say, on the one hand, we attempt to give a definifion to a divergent
series which shall harmonise with the development of WerrrsrrAss’ theory, and on
the other, we enter more deeply into the nature of the essential singularity of the
function of which the divergent series is the expansion.

Suppose first that we have a series ¢y + a2z 4+ ... 4+ a,2" 4+ . .. of finite radius
of convergency p, so that by Caveny’s rule, Lt %/, = p~.

NnN=ao0
When

of a series as a command to add in order successive terms leads to no result.

V/

is greater than p, the series is divergent and our fundamental conception

And yet, if the function which the series represents be not one which has the circle
of radius p as a line of essential singularity, the function exists outside this circle,
and admits an analytic continuation. Thus the function exists even when the series
1s divergent.

Can we not then regard the series when divergent as a command to perform certain
operations which shall yield the analytic continuation of the function? We can do
so, and in an infinite number of ways.

The most simple is, perhaps, given by an extension of a process developed by
BorgL.* ‘

Let the plane of the variable x be dissected by some line going from 0 to « to the
right of the axis of 7.

* «“Théorie des séries divergentes sommables,” ¢ Liouville, 5 sér., t. 2, pp. 103 ¢t seq. ¢« Mémoire sur les
séries divergentes,” Ann. de I'lcole Normale Supérieure, 3 sér., t. 16, pp. 1 ef seq.
, p ) ) » PP 7

312
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This line of section will render (— )"t = e* D uniform, and we shall take

that value which is real when x is real and negative.
Then 1t 1s known that*
K co
2
r(0) = Mﬂw-—f — ) le 7 dx
( ) 2 sin wl ( )

where the contour of the integral embraces
the line of section as in the figure.

From the original series

ay + a4 a4

and an auxiliary function

0o a X(‘Q) (/0-}-‘01 +-'-‘+‘C”Z’L+.'.

1 . . . .
in which ¢, = T+ 9)—-—0 being any arbitrary quantity—construct the function

G(x)=aywy +acx4... +acx" ...
This function will be an integral function, for

/T v oo
Lt Vae,= Lt T 6 =M, =0

Consider now the integral

e O G

This integral is equal to

SR acx e (=) de, or X azn
2 1n ~r9_(2 '_ " u J ( > ",/:0 W

That is to say, when |z]|<p, the integral represents the same function as the
original series. For all values of |z], the integral, plovtded it has a meaning, repre-
sents the analytic continuation of the series. And if, when the series is divergent, we

regard it as a command to perform the processes whx.oh lead to the integral

j(r (wz) e™ (— x)" d,

2 sin 'n-H

we shall obtain a conception of such a divergent series which is in harmony with
WererstrRASS theory of functions.

* See a paper by the author, ¢ Messenger of Mathematics,” vol. 29, p. 105.
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§ 25. We now enquire whether the domain of existence of the integral is coextensive
with the domain of existence of the analytic function defined by the original series.
Just as the series ceases to define the function by becoming divergent, so the integral
may cease to be an adequate expression by becoming infinite.

Consider the series 1 + 2+ 224+ ... 42+ ...

The “sum ” of this series, when divergent, is represented by the integral

2;{:”7@ ( G (w2) e (— ®)’"1de, in which G (xz) = éo f—(gf%ﬂgj’

and the integral is taken round some contour embracing an axis in the positive half
of the z-plane,
Make now 6@ tend to unity. Then G (xz) becomes ¢, and the integral becomes

=]
( e~ dx, taken along some line in the positive half of the z-plane.
v 0

Suppose now that @ = pe’, z = 1 4 7¢* where 0 and ¢ are both in absolute value

not greater than = Since the axis of the integral lies in the positive half of the

z-plane, ;i —e= 0= — Z + €, where € is a positive quantity as small as we please.
The amplitude of = (z — 1) is 0 4 ¢, and that the integral may be finite this quantity
must be such that 3 (z—1) is negative. Therefore 3§Z> 0-+¢ >7§ or -~-7;> O-+p> -—%r

These conditions can always be satisfied by values of § within the assigned range,
if ¢ does not lie between or at the limits of the range bounded by € and — e
We thus see that the funetion 1/(1 — 2) is represented by the series

14+ z4224 ... F224+. ..
within a circle of radius unity ; and by the integral

15

& (zz)
S S LN o e 0-~1
2 sin 70,( [,;’0 T'(n + g):} e (—x) M dx

for all values of z except those which lie on that part of the real axis between the
points 1 and o
O p '
§ 26. Similarly the servies 3 Wi O its integral equivalent when it is divergent,
=0 A ) °
will represent — 27! log (1 = z), provided z does not lie on that part of the real axis
between 1 and . And the same is true of (1 — z)™ and its equivalent series, when
m 1s not necessarily an integer. These statements form easy examples which the
reader can at once work out for himself.
It 1s interesting to notice that the lines from the singularities to infinity intervene
to give uniformity to the non-uniform functions to which divergent series may
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“gum.”  Thus the divergent series 3 —’r] represents the non-uniform function
neeg B A 1

27 log (1 — 2), which becomes uniform when a cross-cut is made along the real axis
from 1 to 4+ oo.

§ 27. Suppose now that we have any function with singularities lying outside
a circle of radius p, within which the function is represented by the convergent series

N ST SIS S A S

We may join the singularities by straight lines to infinity, each line being the
continuation of the direction from the origin to its mnitial point. Then within the
simply connected area thus formed we may replace the function by a set of integrals
of the type

14

e L G () 07 (= 2)0 di
2 gin o § ( ) ( )

Which we can therefore regard as the ¢
region in question, whenever this set of integrals has a meaning.

sum” of the divergent series within the

Although in general this will not be the case, we can nevertheless, if the function
represented by the series has only a finite number of poles outside its circle of
convergence and within a circle of finite radius o, greater than the radius of conver-
gence p, split up the given series into a sum of- others each of which, except the last,
will be divergent, but capable of being represented by an integral of the foregoing
type, while the last series is convergent within this circle of radius o.  The circum-
stances under which the whole series can be represented by a definite integral over
the region of its existence I hope to discuss elsewhere. The problem is bound up
with the determination of the number and nature of the singularities of a TAYLORS
series and is, therefore, connected naturally with the researches of DaArBoUX,*
Hapamarp,t Borer,{ Fasry,§ Le Rov,|| Linperor, T and Leav**

§ 28. So far we have been concerned with the summation of divergent series of
ascending powers of z which are convergent for sufficiently small values of |z|. We
will now define asymptotic series as those which are divergent, however small |z|
may be, and we proceed to consider their summation. \

At the outset we can see that the problem is essentially different from the one

* DARBOUX, ‘Liouville’ (1878), 3 sér., t. 4, pp. 5-56, 377-416.

+ HapaMARD, ‘Liouville’ (1892), 4 sér., ¢. 8, pp. 101-186.

1 Borgr, ¢ Comptes Rendus,” October 5 and December 14, 1896 ; December 12, 1898 ; ¢ Acta Mathe-
matica,” 21 ; ¢ Liouville’ (1896), 5 sér., t. 2.

§ Fapry, ‘Ann, de P'Ee. Nor. Sup.” (1896), 3 sér., t. 13, pp. 367-399 ; ¢ Acta Mathematica’ (1899),
t. 22, pp. 65-87; ¢Liouville’ (1898), b sér., t. 4, pp. 317-358.

| L Rov, ¢ Comptes Rendus,” October 21, 1898, and February 20, 1899.

4 LINDELOF, ¢ Acta Societatis Fennicse, 1898.

#% Lpav ¢Liouville’ (1899), 5 sér., t. 5, pp. 365~425.
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just considered. Instead of the process of summation leading to the same result,
whatever the nature of the integral process chosen, we can obtain an infinite number
of results, each associated function leading to a different function, of which the given
series may be regarded as the asymptotic expansion. For when the divergent series

~
<

, 1t defines a function over that area

is convergent for sufficiently small values of
of convergence, and any summation process can only lead to the analytic continuation
of a definite branch of that function. But a true asymptotic series has no area of
convergence, and any meaning which we care to attach to it will harmonise with
WaerersTrASS’ theory of functions.

The essential nature of the difference between the two kinds of series may be
brought out in another way. A series convergent for sufficiently small values
of |z| represents a function regular in the neighbourhood of the origin. But any
function which a true asymptotic series can represent will have the origin as an
essential singularity. And, therefore, not only can many functions with an essential
singularity at the origin have the same asymptotic expansion, but also the same
function may have different asymptotic expansions in different areas having the
origin as apex. It is almost impossible to imagine a vagary which an essential
singularity will not possess, and this fact we cannot, throughout the whole of the
investigation, too carefully bear in mind.

Inasmuch as any means of regarding an asymptotic series leads to a result peculiar
to that means, we must choose our process with care so as to obtain the most simple
result, and, if possible, so ag to ensure that our conception of such series agrees with
the arithmetic point of view by which historically they were generated.

§ 29. Suppose, in the first place, that we have given the asymptotic series

o+ vz + at ..ot a L,

in which, by Caveny’s rule, Lt /&, = «. And suppose further that Lt ‘—/7-53" =

o= n=w

Then the associated function

G (2) = apey + ez + .. a4 ...,

in which ¢, = will be an integral function.

1
Pt )
It is a natural extension, then, of our previous ideas to regard the asymptotic
series as the expansion of the integral

— f G (xz) e7 (— )"~ d,

2 sin é

and, conversely, to regard the integral as the “sum” of the asymptotic series.
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The point z = 0 will be an essential singularity of the function of which the
integral is the formal expression. For certain values of z near z = 0 the integral can
probably take values which differ infinitely for the smallest change in the value of z
This will happen when z lies on a line of zeros or poles crowding to z = 0. Along
such lines, or quite possibly within areas of the same nature, the asymptotic series
will cease to represent the function.

Further, there must always be such lines or areas of non-representation, for the

only functions to the essential singularities of which poles or zeros or other
1

1
singularities do not crowd arve of the types es, « ..., which cannot admit of
asymptotic expansion.

We have then the fundamental vesult that the integral cannot represent the
“gum” of the series right round z = 0. There will be certain lines or areas with
2=0 as extremities or vertices along which the asymptotic series cannot be ¢ summed ”
by any process which we may employ: these lines or areas will differ with the
different processes, but will never be absent altogether.

There are, of course, asymptotic series of the prescribed type which can never be
“gummed” by any process which we may employ. Such a one 1s g‘, a2, in which

n =0

Lt (¢uyy — ¢,) = o and Lt {Ya, = oo. DBut such series will never arise naturally in

p=w 0=
analysis, and we do not, therefore, need to trouble about them.,
§ 30. We have now to consider whether, when a series of the prescribed type is
“ summed” by means of the process indicated, the function which results admits the
series as an arithmetically asymptotic expansion according to Porxcari’s definition.
Denote by f(z) the integral which is the result of summing the series

o+ a4+ .00 F a4

ns
. . a, «,
in which Lt /¢, = o and 1.z V" = 0.

n=m N

The associated function for the servies is
. ‘
G(2) = ayy+ acz+ .o F a4+,

and for s,, the sum of the first n terms of the series, is

oy + acz .o 4wl

Hence

an 2 sin 70

J(z) = s L V(gw-l_(-?’, ) ()w<___ x)e«-u-—l o

a0

where
S Gy (% x) = 2w [a.e, oo (22) + .0
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Now 27" G, (2, #) is an absolutely convergent series, and |¢™ G, (22)| tends to
zero as . tends to infinity.

Moreover 27" G, (2z) and G (az) are functions which, while » has any finite value,
= oo, for they only differ by the polynomial

have the same character near |xz
aoto + ez + . .. ae, (zx)"

GoinG0)

o 76[ R (—a)™=1 dx will represent an

Therefore the integral

. . [
analytic function of z whenever o——— G (xz)¢™ (— @)’ dx does so; and the
2¢in 7w ’

two functions will have the same character near z = 0.
Therefore, within those areas for which the second integral represents the ““ sum”
of the given asymptotic series, the first integral is finite, and |27 { f(2) — s,}| tends

to zero as |z| tends to zero.

Thus the asymptotic equality satisfies Poincari’s arithmetic definition. The
reader must note very carefully that this theorem does not apply to divergent series
which have a finite radius of convergence. It is necessary that |z| should tend to

zero. No computer, for instance, could make 1 — 2 4 2% — 23 4, ., tend to 12

§ 31. Suppose now that we differentiate the series
ay + az ... A a2t L
in which

Lt /a,= o, and Lt Vit 0.

n=w n=w
‘We shall obtain the series
ay + 2002 .. w2t L

1If we “sum ” this series by the exponential process (the name which it is convenient
to give to the process employed in the preceding paragraphs) we obtain the integral

. - : o
P f G (xz) e (= a)’~' da, in which

G, (22) = a0, + 2a5c0z + . ..+ na,e, (2) 7 4

We thus see that, since this series is an integral function,

0
G (xz2) = o G (xz)
Therefore the “sum” of the series «; -+ 2,2 -+ . . . -} naz”' 4.0 L is
¢ (0 y 6--1
e Y e (= )t de
2 sin w()j ¢ G (l >( ( ) .

VOL., CXCIX.—A. 3 K
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Now so long as the integral

S g G (xz) e (= x)" " da

2 sin. w0

is within the regions surrounding z == 0, for which the original series can be summed,
the differential coefficient of the function which it represents is the function repre-
sented by the integral
s it 3 O (@) e (= i

for we do not transgress the rules which govern differentiation under the sign of
integration.®

Therefore, within the region for which an asymptotic equality is valid, such
equality may be differentiated.

Similarly such equality may be integrated. And the process of differentiation or
integration may be repeated any number of times.

§ 32. We have hitherto limited ourselves to the consideration of asymptotic series
of the type

dy + a4 ... + a2 4.

WS
1 1 . @,
in which L¢ ¥/a, = o and 1 .L{r’% =

n=xn =00

The first condition is necessary that the series may have zero radius of con-
vergency, that is to say, that it may be asymptotic.

The second condition was requisite in order to ensure the applicability of the
exponential process.

wy T
. . . . s s T . AL :
It is convenient to call an asymptotic series for which Lt ¥ = 0 an asymptotic

N=aH
. e 1 o
series of the first order ; one for which this limit is greater than zero, but L¢ V=0,
N=w0

a series of the second order, and so on.
We have given in the preceding paragraphs the theory of summation of series of
the first order. But suppose that we wish to sum one of the most simple asymptotic
'z +a) (=) (@)

series, that for log — —~, namely %

T e , where S, (¢) is HermiTe’s Ber-
L (g)% 1=1

nt
noullian function,
By Cavcay’s theorem, re-discovered by Hapasarp, we know that

Lt it S’ﬂ/ﬂ(&) hotvosel 2

o
7!

* Jorpan, < Cours d’Analyse,” 2nd edition, vol. 2, pp. 15 $-157.
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for the expansion
e — 1 2% Su(a)
e —g = S
e — 1 n=1 M!

is only valid within a circle of radius 2.
We see then that the asymptotic series is such that, if we denote the coefficient

of — by a,,

Lt \/a" > 0, and Lt l{%" = 0.
The series is thus of the second order. And the associated function formed as in the
preceding paragraphs will be
G(m)= 3 (FoB(,,
el NN
which is not an integral function.

Our analytical machinery therefore breaks down, and we must attempt to
extend it.

Just as the original problem admitted of an infinite number of solutions, so we
may now proceed in an infinite number of ways to give an analytical meaning to
asymptotic series of the second or higher orders.

Of these two would appear to be most natural. We may either use some more
powerful associated function than we used in the exponential process, or we may
repeat the exponential process until we arrive at a finite analytical function.

§ 83. Let us consider in the first place the second of these alternatives.

If we have the asymptotic series

ay+z+ .., +a ...,
we have agreed to say that this series is the expression of the analytic function

3 Sm—we J-G (wz) e (- x)’" da, whenever this integral has a meaning, that is,

whenever G, (xz) is an integral function, and the integral is not infinite.

Now
GE=rg+trare T Train? T
=a, + o'z 4+ ...+ a2 + ... (say),
and, if the series is not absolutely convergent over the whole plane, we shall be

consistent with our former generalised point of view, if we regard it as determining
an analytic function

:‘Z—sl—n—';é -(G (x,a) e ‘”( )e -1 doc,

whenever this integral has a meaning.
3K 2
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Now

N e W W,
G, (2) = 1(6) +oot U'(n + 9)4 e

=) ...+ a7 4 (say)

If the series G, (z) had a finite radius of convergence, or zero radius of the first order,
the function G, (2) will be an integral function, and by the process just sketched,
a definite meaning has been assigned to G, (z) and the original series.

When, however, (| (z) has zero radius of convergency of the second or higher
order, G, (z) will not be an integral function, but we must regard the series which it
denotes as determining an analytic function

[

2sinwd

{Gg (az) ¢ (— a)~1 dx,

whenever this integral has a meaning, that is, as a preliminary condition, whenever

a,’”’

e

_m+ '(n + 6) o

1s convergent over the whole plane.

The procedure may be repeated indefinitely. If we have started with an asymptotic
series which does not ultimately give rise to a function G, (z) whose finite radius of
convergency is a line of essential singularity, we shall ultimately get an analytic
function of which the original series is the asymptotic expansion in the vicinity of its
essential singularity z = 0.

§ 34. The extension which we have just indicated is in harmony with the general
theory, but we have still to determine the important point as to whether the
asymptotic equality of series and functions satisfies PoiNcar®’s arithmetic definition.

Take for simplicity the series of the second order a; -+ a;z 4+ . .. 4+ a2” + ...,
for which the associated series

gy a; s

JRg B S = he LA Z” L.
rotrasa T Y reeat T

has finite radius of convergency and represents the function
lG (Z),
The given series gives rise to the function

[

G(z) = Py flG (wz) e (— a)~t d.

IJGt
{}u (Z) = {{y + .. + CY/,,Z”S
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then
G () = G () = 5o | 16 (22) = 1G (22)} e (= )
where
G () = 2 m

Now z77=1 {,G (xz) — |G, (x2)} is an analytic function of x of the same character as
1G (z) : hence the natures of the two functions G (z) and 27! {G (2) — G, ()} near
z = 0 are substantially the same. And therefore, in general, if G (z) tends uniformly
to a finite limit as 2z tends to zero in any direction, 277! {G (z) — ,( (2)} also tends
uniformly to a finite limit as z tends to zero in the same direction. That is to say,
|z™ {G (2) — .G (2)} | tends to zero as z tends to zero, so that the divergent series is
arithmetically asymptotic for the function G (2).

It is evident that a repetition of the same argument will prove the arithmetic nature
of the asymptotic dependence of a series of any order and the function to which it
gives rise by successive applications of the exponential process. But one case of
exception must be noticed. At each step the equivalence of the asymptotic series
and the derived function fails along certain lines or within certain areas radiating
from z=0. And, since the effect of such failure is cumulative, it may happen that
before the process is finished the equivalence has failed over the whole area around
z=0. KEither the series is hopeless—an artificial monstrosity that cannot arise in
practice-—or we need some other process by means of which it can be interpreted.

§35. As an example of the process just sketched, consider the asymptotic

expansion ,
! 21 § — 8\ 8,)/(a) 2+
—s woil\ ) s+ —1"

which, qud function of z, is an asymptotic series of the second order and wherein
s and @ are any complex or real parameters.

Applying the integral process associated with the exponential function to the series,
we obtain the integral

23; j‘ G, (zx) e %z dw,

where

Gy ()= =1 (1= ) (= up=f 14 3 (2r&@ wl,
n=1 .
and we have, for convenience, taken the auxiliary function to be

s (=)yTr(@—mn—s)a"

n=0

so that € 1s absorbed in s.
Now G, (u) is a series of finite radius of convergency, and the analytic function
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which we take the series to represent is the function of which the series is the
expansion within the circle of convergency. The series will therefore denote, with
our present conceptions, the function

4 g

1

— I (1 —s) (— uy~L
The series with which we commenced may therefore be regarded as giving rise to
the analytic function
[ 6-—(a+—i'>t

¢ o B )
._é;P(l-—S)‘(l_~f*(_xz)s Te Zd"rw""‘é;:r(l—-—@f“

e 1 . ot

(— ey~

on making the substitution ¢ = wz.

This function admits when |z| is small, the arithmetically asymptotic expansion
from which we started.

When 27! is a large real positive integer, the series and integral become fundamental
in the asymptotic definition of the extended Riemann { function.

But there can be obtained by other processes an indefinite number of analytic
functions, each of which has an essential singularity at z = 0, near which point it
admits the given series as an arithmetically asymptotic expansion. We proceed to
indicate one alternative process by which such an analytic function can be obtained at
a single step.

§ 36. For this purpose we use certain results of the theory of the connection between
linear difference and differential equations.

Consider the function

o cat+1l...a4r—1 "
F(oc, PLoeees pm,-—x)—l - 1.p1...pmm+’ - ’i‘!pl...,o,;,...pl—'r?’m1...pm+-1~:'1(_w) T

It is evidently a transcendental integral function which is a solution of the
differential equation

[(3+a)+~910~9(,9+p1»-1).(3—{' Pm""l)]y:o:

. d
wherein the operator 9 =« é

If y be any solution of this equation, form the function

S f y (— xytdr,

2 sin 7z

where the contour of the integral and the prescription for (— xz)~! are exactly those
employed in the definition of the integral for T (z) previously employed (§ 24).
On integrating by parts, we have
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2 sin 72

)= = g | Y1 (— & d,
a relation which may also be written

z+1)flz4+1)=— ;=

2 sin 7z

[ (] (2t e
‘We thus see that
2zt+1—p). .. (z+1—p.)f(2)
= ()" g | B O o= 1) (9 = 1)) (— )y da,

2 sin 7z
and also

CHL= ) e+ D=2 [0 +2) y) (— o) da

2 sin 7z

Therefore, since ¥ is a solution of the equation

SO 4 p=1) (B pu— )y =—2(8+a)y,

we have

z.(» 1—1..,.- 1~ pn
e )= () BTl e )

The general solution of this difference-equation is

AL (e—2) T'(p) - T (pm)
PO TG Tl D=5 ™ @ ®Pn - pu),

where @ (2, @, py,. . . pa) 18 a simply periodic function of z of period unity.
We have then established the identity

P f Ey (2, pr - o puy — ) (— @) do

2 sin e
_TET(—%  T(py...T () ‘
T T(pm2). T (o) T BB P pu)

When o = p,, the expression on the left-hand side, and therefore that on the right-
hand side must involve p, ... p, only. Thus, when & = p,, w (2, @, py, . . . pn) involves
Py - - pnonly. It must therefore be a function of @ — p,,... @« — p,. Not only so,
but it cannot involve these quantities at all ; for when o = p;, = will be a function of
P1L = Pgs + « - PL = pm, and yet it is independent of p, ; and so on when a = p,,... a = p,.
Thus = is a function of z, simply periodic of period unity, independent of a, p,,... pn
and m.
Let m=1,a=p =1; then F, (¢, p;, py ... pn, — ) becomes e¢* and the
integral becomes
l/

f “”(«—- x) ' doe = T' (2).

) sin 7rz
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Thus = (2) = 1, and we have finally for all values of «, p,,...p, and z the
identity

12

) (—2) " de =T (). I(a —2) Lip) ... Dlpn) o

‘ij(“aPh---Pm_m T(a) F(Pl_'d)F(Pm_z>

2 sin 7z

This identity is the direct generalisation of the identity

v ~cf __ Yl Jp —
2’;‘1—1;;—2;]’ e~ (—wy~tde =TI (2),
and we may therefore expect to be able to use it to extend our former process of
“ summing’ asymptotlc series.
§ 37. We may, in fact, show at once that we can sum any series of convergency
zero f(z)=ay+az+... 4+ az*+ ..., in which Lt a, = (n!)f, where k£ is any

finite quantity. o
For this purpose we put e« = p;, =...=p, = 1;
xr L ”l‘m(— Vc) _
Fm (x) - ]' + (1!))1, + e (—7“—15;}’ + ey a’nd we hd‘ve 9, ,([-qln ';T ]m—(._x) ! dw—-[F( )]

Then, with our former notation, we take the auxiliary function

x (2) = 3 ¢,2", where /¢, = [T'(n + 0)]" = . r P (— 2) (=)™ (= a)~ ' (— ) da.
n=0

27 [5111 L

And now f(2) is defined by the integral

_,l"_ _ ’ﬂ'ml‘ ( CI) ( ,”)0—1
R .( ( xz) [sm " dz,
in which

Gu) = 3 (=)"a,c0r.

n=0

We take m > k, and then G () will be an integral function.
For Lt a,c, = n®=meg=nk=m+.... and therefore Lt «/ a,c, = 0.

N=w nN=,

* In connection with the proof of this formula, the reader may with advantage refer to:-—
MEeLLIN, ¢ Acta Mathematica,” 8, pp. 37-80; 9, pp. 137-166 ; 15, pp. 317-384.
’ ¢ Acta Societatis Fennica,” t. 20, pp. 1-115.
POINCARE, “ American Journal,” vol. 7, pp. 203-258.
PINCHERLE, ¢ Accad. dei Lincei,” ser. iv., t. 4, pp. 694-700.
POCHAMMER, ¢ Mathematische Annalen,” Bd. 38, pp. 586-597 ; Bd. 41, pp. 197-218.
' ¢ Crelle,” Bd. 71, pp. 316-352.
ORR, ¢ Cambridge Phil. Trans.,” vol. 17, pp. 182-199.
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We can thus sum any natural series of convergency zero whose n!" coeflicient is
of the same order as a finite power of n!*
‘ § 38. But we can go further than this: we can construct inverse functions which
will enable us to sum any series of convergency zero.
For we have seen that

D

. W:Iml,‘g,“:(__”j,i) et , _ 12m
f (sin w@) (— ) dw = [T (n + 0) .

0 n
» . 2 7r~m}( mn,(— x)
Suppose, now, that we construet the function F(x) = 3 — 2,
PPOSE, P f( ) et (sin @)

This function will be an integral function of o, for we have

I

| . " - B - 2m
/ (;l) 2‘ (— ‘L) El [7’! sin 'rrﬁ}

g i
L <1"I sin 7r9>

which is absolutely convergent for all values of |z,

But, if we operate by our integral on this function, we have ;;q—r- J’ S @) (— ) duw

=3 [T (n 4 6)]; and the function s, [T (n - 0 is infinite if B (n 4+ 60) be
m=1 ’ ma=1

positive.

by By, (—

ey ) , where b,, 18 so chosen as to make the
(sin @)™

series > D, [['(n + 0)] converge for all finite values of =, it is obvious that f(x)
m=1

If, now, we take f(z) =

3
I 48
-

will itself converge for all values of «, and so be an integral function.
We may now take for the associated function

o

x(z)=cy+ez+...4+cz*+ ..., wheree, ' = 2 0,[I'(n + 0)]";
m=1
and by suitable choice of the coeflicients b we may make ¢, vanish to an order as
great as we please.

We can then sum the series ¢, -+ az + ...+ a2* 4+ ..., where «, is infinite
with # to an order as high as we please. In other words, we have invented the
analytical machinery necessary to sum any (natural) asymptotic series.

§ 39. As an example, suppose that we wish to sum a series ;4 a2z + .

. . . . v l2
+ a2 + . .., where a, is infinite like e*{"®} , where 0 < a < 1.

* This theorem corrects a mistake in my paper, ¢ Theory of the (jamma Function,” p. 112.
VOL. CXCIX. —A. 3 L
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xre . . 1
With our previous notation we take b, = -~ and
T

@ 2 — © @ ) p Qm oo ™ 2
=8 TEC s s [T s [ ]

1 m! (sin 78)2”‘ o w1 M| 7! sin 70 o
so that f'(#) is a transcendental integral function.

I3 . , NN
Then we have . [/ () (— a) " de = % L '7'}-; ! )l
“y1) m=1 7.

o (,’[I'(,L-rO)J’l o ;

We take the associated function

x{(z)=c¢y+ecz+4 ...+ cz"+ ... where ¢, = P 1

b

and the integral function
N . . . e T
G (2) =ayy+ ...+ acz’ -+ ... inwhieh Lta,c, = Lt ~orap = O

B=00 n=ow €

Then the sum of the series will be represented by*

j‘ G (= az) f(x) (— @) " da.

§ 40. We have now, by means of the generalised exponential functions, given the

12

D

machinery by which we may expect to be able to “sum ” a natural asymptotic series
of any order.

It may be proved just as for the fundamental exponential process that the series
and the function derived from it have asymptotic equality of the arithmetic type.

Moreover, if we regard the series as having a finite radius of convergency, on
which one or more singularities lie, which has shrunk indefinitely, we, as it were,
magnify it again by means of the function ¥, (&) so as to obtain the associated
function

(} (u) — § (_g_. i OLMC,L'M”
=0

whose radius of convergency is infinite.

The alternative process consists in successive magnifications by means of the
function ev.

These two processes will in general lead to different results: in each case we shall
obtain functions with z == 0 as an essential singularity ; both functions will have the

N L1 L
* When we take b, = (m!)¥, we have

A o1 g, & [T (n A B)]
i [7@ oyt 8 WO,

and, when » is large, the series is, by a theorem due to Stoxus, infinite like exp. {% [T (n + )]

to the first approximation. We thus sum any series for which «, is of order exp. {[I' (n)]'}, by taking
s greater than r.
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same arithmetically asymptotic expansion. But the expansion in all probability will
not be valid in the two cases along the same lines or within the same areas tending
to z = 0. Moreover, such a result is not surprising. The original series, except
from the point of view of the computer, had no meaning; it did not define an
ana]ytic function over any area of the plane of the complex variable and therefore
could not uniquely represent such a function. We have, however, now given two
processes (out of an infinite number) by which we may conceive the series to define
an analytic function, and the functions thus defined each satisfy all that the
computer can demand.

§ 41. It will, perhaps, elucidate the theory which has been developed if we give two
actual examples of its application.

We will first investigate the Maclaurin sum formula, which gives an asymptotic

m—1
value for 3 ¢ (n) when m is large, under certain restrictions as to the nature of the
n=1

function ¢ (7).

In the first place it is evident that such restrictions must exist : the function must
either be uniform or be limited to a definite branch of a multiform function ; and, as
z takes increasing integral values, ¢ (z) must increase uniformly.

We will assume, therefore, that ¢ (z) is an integral function, which may be
represented by a TAYLOR'S series, oy + az 4 . .. 4+ 2" 4 .

Then, if' the integral be taken along a contour embracing an axis in the positive
half' of the z plane, we shall have, by the usual expression for the gamma function,

n m

Sgm=3 [ Ear4n e (= de = iz g wlddn)

n=1 n=1 2 Z’YT. ] — 077 = -0 (—/)7+1

dz.

Suppose now that the series s a, T (1 4 ) 2" has a finite radius of convergence p.
=0

Then 3 a, I'(1 + 7) (—2)"""1 will be the expansion of a function convergent
r=0

outside a circle of radius p™!

We can always make the bulb of the contour along which the fundamental
integral is taken expand so as to entirely include this circle of radius p~!, and the
subsequent integral will then be finite.

(2 @, 7!

Let now Z = jwf s

e e

dz, so that Z is a definite finite quantity

depending on the coefficients in the expansion of ¢ (2).

% a, I'(1 + r)

] 1 =% =0 (_ Z>r+1

m-—1 P ( ez

Then 2 ({) (n) = ~’-—

The second integral may be written in the form
3L 2
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) =, (1) Cxnoa (L 4+
. VA VYRR S o= \ .
27TH1 Fob (= .}o 0000

if we postulate that we are reversing the process by which we “sum” an asymptotic
8 y ymj
series.
The integral is equal to the asymptotic expansion

S/ o [ _n al (1 +7) o S, (1) a1 (1 4 7)
[e - dy =3, 5

M8

o nl 2w pmo (=) o D o (2 + 7 —a)mr 7t

o 't

S/
01+T+§Zam’—l—2 (){men’““’w r—1. ..7*-[—2-—71}
r= n=2 7=0

= "¢ (m) dim + 4 (m) 4 £ 2100 ()

=1 Tt + 11 dme

When 7 is odd &,,,(0) = 0: the integral is therefore equal to the asymptotic
expansion

" m 4 4 2 8%42(0) drl
j ¢ (m) dm + L (m) + ni’ oy T ¢ (m)

) Bn-ﬂ d Ikl

f ¢ (m) dm + L (m) + 3 ()n L0y dri ¢ ¢ (m).

We have finally the asymptotic equality™

m—1 N n ( ) J)ll+ 7(?,?}
n§1¢ (n) =7+ 5 ¢ (m) dm — ¢ (m) +E = ()n + 9)1 a1 (m).

This equality is valid when ¢ ( z) is a uniform integral function of z such that if 1t
be expanded in the form ay+ az + ... +az -+ . .., the series 3 al (14 7»)z
=0
has a finite or infinite radius of convergency.

— . 1

We must therefore have v/ a,n | equal to a finite or zero quantity, so that a,™

must increase as fast as or faster than n. The function ¢ (z) must therefore be a
function whose ¢ order ” is greater than or equal to unity.

In the particular case when the series % @I'(1 4 #)2" represents an integral
7==0

function, we may conveniently express Z in terms of the Riemann { functions of
negative integral argument.

* Tn a subsequent paper I shall show that it is better to write this formula in the form

" $ (¢ + no) = 7 + 3 Balelo) & DQ ¢ () d'ﬂjl

=0 n=0 n! o L & =i

in order to exhibit its analogy to more general extensions.
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For in this case the bulb of the contour integral which expresses Z may be taken

. 1
so small as not to include the poles of - -, and we shall therefore have
F -

1

(=) By
2+ 2

L= dz —rm1 ® 2,
Zi= X ar! ( (=)= Y q (=) = N g
=0 JOoT— l p=0 1=0

This series is evidently convergent if ¢ (z) is an integral function whose order is
greater than or equal to 2, a condition which is equivalent to the convergency for all

values of |z| of the series

S a,l (14 7).

=0

It is evident that the Maclaurin sum formula will hold good in many cases in
1 1

which ¢ (2) is not a uniform function. 1If it be a function like 2° or 2? log&, or either of
these functions multiplied by an integral function of order greater than unity, the
Maclaurin formula will be valid if we suitably specify the branch of the function
considered. Instead of attempting to tabulate such cases, it is perhaps better that
we should go back to the genesis of the formulae when they actually arise. Applica-
tions of the formulae which will be made subsequently in this memoir will usually be
to cases in which ¢ (z) has very simple values; and all general formule will be
tacitly supposed subordinate to what we may call the Maclaurin restrictions.

§ 42. As a second example of the theory of asymptotic series we propose to try
and find the function of which the series

- L9 n!
[l ]

is the asymptotic expansion near the essential singularity @ = oo .

We know that, if n be a positive integer,

U(n) = ( et (i
0

where the line integral is taken along any straight line L from the origin to infinity
which lies in the half of the 2 plane to the right hand side of the imaginary axis.
Therefore the given expansion asymptotically represents the function

(e

i

. . 1 S . . . . & .
where Gi (1) 1s the function which is represented by the series X w”, and the integral
=0
ht line L.

is taken along the straig
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The given series is therefore the asymptotic expansion of the function
1) = L e, mu;;ﬂw dt.
S () .(o( ) t

Suppose first that the real part of @« is positive ; then, putting ¢ = az we have

(1=2)

floy = £ de.

the integral being taken along a line along which 3 (2) is positive, that is, along
which & (1 — 2) is negative. [These two conditions only differ when we consider a
line practically parallel to the imaginary axis and therefore initially excluded. ]

, . ? g . .
Putting 1 — z = ~ ¢, we have f(z) = — ( ’,Q;, dy, the integral being taken along
Jp - :

a line along which R (y) is positive ; and therefore
?oerdz :
fey== "5 ),

the integral being taken along a line still in the positive half of the z plane. Thus

»erdy (oo — 1 oz
J(x) = ( L j. T d — ( ™ where we take || to be very small.

e 2
< — 4 gy ®

Hence, if y be Eurur’s constant,™
—z

Sflx)=log e~y — r_ﬁ Qmé:‘j dz —log € + log (— ) -} terms which vanish with |e].
Finally, on making |e| = 0,

ﬂ@=y+mgm@+ﬁmud&

It will be noticed that the integral (1) obtained for f'(x) has a pole along the line
of integration so that it has an infinite number of values, all differing by 2, which
are implicitly involved in the logarithmic term.

We see then that, when the real part of x is Uositive the given series is the
asymptotic expansion of the function y 4 log (— x) + 5 ~ 77

Take next the case when the real part of x is negatlve. As in the first case, the

. . ® g0
series in the asymptotic expansion of ‘ ,1“.-. “dz, the integral being taken along a line
o 0 — Z
for which R (2) is negative.
Thus it is the expansion of

— ‘ ﬂ? dy along a line for which 9§ (v) is negative

if ® e dz
—&

along a line for which 4§ (2) is positive.

* See the author’s paper, ¢ Messenger of Mathematics,” vol. 29, pp. 98 and 99.
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On pursuing the same course as before we find that the given series is the

asymptotic expansion of the function
y + log (— ) + J(VL T
0 z

But there is the important difference that now the integral which has led to this
result has no pole along the line of integration. And log (— «), instead of being
allowed to take any one of an infinite number of values, has such a value that
log (— ) is real when 2 1s real and negative, and has for complex values of x whose

real part is negative an amplitude which lies between + Z

We see then that the process employed has led, when 3 (x) is positive to an
infinite number of functions, all of which have the same asymptotic expansion ; and,
when R (x) is negative, to but one such function.

Evidently when we seek an asymptotic expansion for the function *

0 xr+l

f@)=eE

1 77!

we may say that we get, when 3R (x) is positive,

. . 1! ! ’
j(m):[l+7+...+ s +...J
for terms like @ {y + log (— «) 4 2mmi}e™ are negligible compared with the least
term of the asymptotic series ; but when 3R () is negative, we get

H

f(x) = e x{—~log (—x) —y} + 1 + l@ 4+ o

n!

ot

xn

in which successive terms are of decreasing order of magnitude.

The zeros of the function f(x) near the essential singularity @ = oo, are ultimately
along the imaginary axis.

We thus have an illustration of two important propositions :—

(1.) A uniform integral function may admit of asymptotic expansions of different
form in different areas with their vertices at its essential singularity.
(2.) These portions of the plane are separated by lines of zeros of the function.

§ 48, Inasmuch as in Parts ILL and IV. of this paper we proceed to actually
obtain asymptotic expansions satisfying these laws for all the most simple types of

* I was asked to investigate this function by Mr. G. W. WALKER, Fellow of Tiinity College, who
desired to compute it in certain physical researches. Originally I obtained the expansion by considering

. . . dy . .
the differential equation x? Zé + y =, in a way bearing great resemblance to that employed by Hory,

¢ Crelle,” vol. 120, pp. 17 and 18.
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integral functions, we now proceed to sketch the process which will be adopted, and,
in the course of our outline, to prove at once the validity of that process and the
laws which govern its results.

Suppose, in the first place, that we have the absolutely convergent expansion
F@y=ay+az 4+ ...+ a2+ ... in which the coefficients are functions of a
variable ¢, asymptotioally given for large values of |i| by expansions of the type

by, l)ﬂ
Gy = l‘,”’ﬁ +

i ... are constants and ng, ny, . . .
are numbers arranged in ascending orders of magnitude and tending to 4+ o as a

s

-+ ’,‘)" -+ ... where the quantities 0, , b

limit, the first numbers of the series being possibly negative.
Suppose that we substitute these asymptotic values of the coefticients and

. . 1
rearrange the expression for F (z) in powers of -
€ : ¢
We shall obtain, when [¢] 18 large, an asymptotic equalit
E i 56, yHf

1 : 1T, v
F(z) = /it {:Z’oo bz bug + } + g [Om RO S S ]

17, :
oo [bos + b b 1 .o

This expansion will be arithmetically asymptotic: the computer would use it to
calculate F (2) for given values of z and ¢ when 17/ is large.

The series which enter as coefficients will be, in all probability, divergent ; but, as
we are looking at the whole matter from the point of view of the computer, we are
at liberty to “sum” them by the methods which have been developed in the present
part of this memoir.

If, as will be the case in the applications which we subsequently make of this
theory, these series have a finite radius of convergence, we can “sum” them each to
a definite, possibly non-uniform, analytic function ; and we shall have an expansion

F(2) = S f’tﬁ 2 which will satisfy Porxcari’s definition of arithmetically asymptotic
=0
dependence. We shall thus have obtained a unique asymptotic expansion for the

function F (z). The case in which the series of the type

7)03 + ?)“Z + e + bmsﬁ'm "‘I" o e s

have zero radius of convergence does not arise. In such a case we should be able to
obtain an infinite number of functions, of which these series are the asymptotic
expansions, and we shou]d have the absurdity that the asymptotic expansion of F (z)

in ascending powers of 75 is not unique.

§ 44. A function cannot, as has already been stated, be represented by the same
asymptotic expansion for all values of z in the neighbourhood of z = o, unless the
function is an integral function of 27!, and the series absolutely convergent.


http://rsta.royalsocietypublishing.org/

A
/A A
a

A

THE ROYAL |
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

\

a
/i \
[ )

A
S

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

MR. . W. BARNES ON INTEGRAL FUNCTIONS. 449

W

i

-+ . .. have such a character, it

For unless J (z) and the series a, + ql 4+ ...k

®

is impossible that Lt 2 [J’ (z) — ay — Qo=

Z

f

:—f-J should, as z approaches infinity,

©

always tend uniformly to zero, whatever be the argument of z.

But, as we proceed to show, a uniform function of finite “ genre,” with an essential
singularity at infinity can, in general, be represented by one or more asymptotic
expansions valid for all points near infinity except those in the immediate vicinity of
the zeros and poles of the function.

Two different asymptotic expansions cannot exist within the same region, and the
regions are separated by the lines or areas of zeros or poles of the function. The
theorem is true whether the function be a quotient of repeated or non-repeated
integral functions, with zeros of simple or multiple sequence.

We need only consider the case of integral functions—the general theorem will
follow, since every function of the type just
mentioned can be represented as a quotient
of two integral functions of finite genre.

The zeros of the function must proceed
according to fixed laws, and therefore, in our
diagram of the region near infinity, they will
mass themselves infinitely close together as
we approach infinity itself. They will

therefore form certain lines (not necessarily

straight) or areas of ultimate singularity.
If the areas entirely surround z = o there
will be no asymptotic expansion possible.
We thus assume that there exists an area
such as o AB, non-shaded in the figure,
within which, if' the radius « A is sufficiently small, there are no zeros of f (2).

Suppose first, that the zeros of the function form a single simple sequence, and are
non-repeated ; then it may be written

p=1l s \m
o | 2\ = (7 ‘
FE=eoit (1= 2 )es” - [’ = " (2), (say),
i
where p is the “ genre ” (independent of ), and H (2) is a holomorphic function.
Suppose that z lies between circles of radii lo,| and |@,,,| where n is very large,

then those terms of the product ¢ (z) for which |2| < @,,, may be written, as in the
proof of WrrErsTrAss’ fundamental theorem,

ePI @)

where P, (2) is a function represented by a series of positive powers of z. For those
VOL. CXCIX.—A. 3 M
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terms which correspond to the first @ zeros, we can expand log <1 — ﬂm> in the form

log 2 — log (—a) =7 = (%) — ...

e}

We thus obtain F (z) = ¢"? ¢ (2) = "9, where, when |a,| < |2] < |a,,], P(z) is
an absolutely convergent double series of posit'ive and negative powers of z, together
with logarithmic terms.

Now, unless z be in the immediate vicinity of the zeros of the function, this
expression, considered from the point of view of divergent summable series, will be

\

) in the

P

valid for all values of

Z

. For, when |z

> a,, the expression of log <1 —_

i

form

— [?(,,;' S ERERE NE p J
still exists as a divergent summable series outside the civele of radius |, | for all points
except those near «,. Therefore the form of P (2) exists continuously as |z| increases,
provided we do not cross the line of, or come within the immediate vicinity of, the
zeros of the function. And thus, if we treat the series entering into the expression
of P (z) as series which are summable though divergent, the expansion will be
tndependent of n.

Now the expansion may be written

ki3
where ¢, (m) is a function of m which depends also on » Hxpand = ¢, (m)

m=1

asymptotically in a series of successive differentials of ¢, (n) by the Maclaurin sum
formula, and rearrange the series.

We shall get
(A) a certain series of positive and negative powers of z, each multiplying terms

like r ¢, (m) dm ; and

(B) an expansion consisting of a finite number of positive and an infinite number
of negative powers of z, each associated with a constant arising from a
corresponding Maclaurin expansion.

The other terms depend upon 7 and vanish identically ; the coefficient of each
Bernouilhan number is zero.

When we apply the processes of divergent summation which have been previously
developed, the series which forms the group (A) of terms will reduce to a definite
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(possibly non-uniform) funetion W (z) (say). The remaining (B) terms form the

summable divergent series
A,

P
s=—p “

Ms

[There will only be a finite number of positive powers of' z since the genre of the
function is finite. |
We have then

n O+ S \
F()=¢ s==p

In other words

log F (z) — 4 (2)

admits the asymptotic expansion s A; valid for all points but those in the vicinity
—p ?
of the zeros of F (2). ‘ 1

§ 45. The process just sketched will become much more clear when it is applied to
various particular cases as in the following pages. The proof may, by mere verbal
alterations, be extended so as to include functions of simple sequence with repeated
ZET0S. '

A function with a finite number of simple sequences of zeros can be expressed as a
product of functions, each with a single simple sequence. The logarithm of each of
these functions will admit an asymptotic expansion, and the sum of such expansions
will be the asymptotic expansion for the logarithm of the function. But terms of the
category i (z) may be of different weight in different regions, separated by bands of
zeros, and thus the asymptotic expansions may differ in such regions, as has previously
been seen in the case of the integral function

L2l
e 2

=1 7.7

§ 46. The general theorem which has just been given may be proved pari passu for
integral or meromorphic functions with multiple sequence. We refrain from formal
proof, as the consideration of such functions is omitted from the subsequent develop-
ment of this paper.

Neither do I make any attempt to consider functions of infinite order, or expansions
near isolated essential singularities of uniform functions. The difficulties which arise
are all subordinate to the main necessity of limiting the type of function under con-
sideration ; it seems doubtful whether it is possible to give any general theorem
concerning integral functions and their behaviour near infinity, which will apply to
every function which can be constructed. For exceptional classes must always be
infinite in number compared with those which can be formally defined.
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Parr T11,
The Asymptotic Expansion of Simple Integral Functions.

§ 47. We now proceed to consider in detail simple integral functions. After the
discussion given in Part I, we may confine ourselves to functions with a single
sequence of zeros.

We shall find that such functions divide themselves naturally into three groups —

(1) Functions whose order is less than unity,
(2) Functions of non-integral order greater than unity,

(3) Functions of integral order greater than unity.

In connection with each group of functions with algebraic sequence of zeros we
first consider a standard type with which all functions of the group may be
compared.

These standard functions are

x

].)p( ) e ﬁ {J + :}iﬁ], where P > 1.

n=1

€ z _E ()77 . .
0, (z)= 1 [( 1+ —,/—f;) e et e |, where pis > 1 and not integral, and p
w=1 |\ " B
is an integer such that p 4+ 1> p > p.
) - T 4 a7 : : :
R,(z) = 1 |1+ i e~ ottt where pois an integer = 1.
n=1 | ’L =

\ /

TFor the logarithms of each of these functions we obtain in turn the complete
asymptotic expansion near z = . We then show how all functions of the same
order with algebraic sequence of zeros yield by the same method similar asymptotic
expansions. And we indicate how it is possible to apply the same methods to wide
classes of simple functions with a transcendental sequence of zeros.

§ 48. The constants which enter into the analysis arise from the Maclaurin sum
formula (§ 41), which may for our present purpose be written

G

1 mn ; E 3 [Z
S e (n) = '{ ¢ (71) dn — & ¢* (m) + ,{)’[1 in ¢ (m) S
=1 vs He LG
By
T ) Gy g )+
s being any integer, positive or negative.
What we have called the Maclaurin restrictions for the function ¢ (z) are always


http://rsta.royalsocietypublishing.org/

\

\

Py
/\
-
A

THE ROYAL |

PHILOSOPHICAL
TRANSACTIONS

a
\

a ¥
3

A

SOCIETY

OF

L\

/
A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

OF

Downloaded from rsta.royalsocietypublishing.org

MR. E. W. BARNES ON INTEGRAL FUNCTIONS. 453

supposed to apply. We shall call y, the Maclaurin integral-limit for ¢°(n). We
shall also put F, = — jysd)s (n) dn, and call F, the s" Maclaurin constant for ¢ (n).

When s = 0, we have the formula

n— Bl+1 2+l

S log ¢ (n) = L log (1) dn — 4log  (m) ...+ (=Y o, "7y S rilog d(m) . ..,

n=1

where v, is the Maclaurin integral-limit for log ¢ (n).
Yo - .
We put log Fy = [ log ¢ (n) dn, and call F, the absolute Maclaurin constant for

¢ (n).
When s is a positive integer and Lt [¢7(n)] = 0, it is evident that y_, = — oo

and F_, = 0.

§ 49. In the particular case when ¢ (n) =, p being real or complex, the
Maclaurin constants are particular cases of RieMaNN’s { function.

For, for all values of's,

m=1 1 , 1 1 [ —)1B
% = L)+ oy — = "“‘2(., X 't‘;‘“é";i'
el T (I —sm 2m =1\ 2t /(s + 21 — 1)ym*+

1y L8
‘When s = 1, we have };z} {C (s) -+ 57_’;:;_ — log m] =y,

We have also the special values

25 g : . . .
{(s) = N By, when s 1s an even positive integer,

{(s) = 0, when s is an even negative integer,

— )Y 1B . .
{(s) = Q_Z%;_l;ﬂ , when s is a negative odd integer equal to — (2¢ 4 1).

We write, when s is any quantity real or complex, {(— s) = F (s), unless s = 1,
in which case we put y = F (s). ‘

Svmple Integral Functions of Finate Order Less than Unity.
§ 50. Before we proceed to consider the general theory of the asymptotic

expansion of functions typified by P,(z) = 1 {1 + n”:] where p>1, we will

=1
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-
x z . .
consider the function F (z) = 10 [1 + 1, which is known to be equal to
’ =1 'nﬂ,,

1

(2m)! iz"%‘{e“ir — e,
We have log F (z) = '"zl log ( R >

==

Z . [ y
lo(r ( 14 '7;§>, and, it m> |z, Zm — 1,

we obtain on expdndmg the logar 1thms

, \ m—1 m 1 }3 (_A>.\~——1 ,n?,s
log ¥ (2) = (m — 1)logz — 2 E log n + [ — e L 1

-
ST

+ 3 ﬂ‘} T A ]

g @y @S
n=m |1 ST

If now we employ the arithmetic asymptotic approximations given by the

. . . iy & 1 Lt - _
Maclaurin sum formula for log {(m — 1)1}, = o and X n%, we obtain, in the limit
n=m W =1

when £ 1s infinite,
=1 3,
log F(2) =(m — 1) log z — 2 [(m — $) log m — m -+ log 4/27 + > 5 (27 Y '11;2'4:|

(=y'B, & m%}

1 Wl dm

Py
2s 4+ 1 20,

s=1 sz

T i e

a1 B 2s — 1) ma=l T s =1 271 dm®

or log F () = (m — 1) log z — (2m — 1) log m + 2m — log 2n

I

s R mAL n 2 + L=y fms =
8:,( ) s(2s + 1)z ° s(2s — 1)ym¥™! o2 Z m

» (____)r-—l lﬁ)r {_ 2 2{:".25 gj(m),y“] o3 / ( ) 17Y (Z”” rn—‘gsl

Sy =2 N M - ]

1 (2r)! mar 1 82 dm* s,, s dm¥ |

where we have re-arranged the terms of our double series in accordance with § 43.
Now by the theory of summable divergent series

ko(— 7)?,““ ¢ m?
E( y { — w-;»} = — log >
s=1 s -

2 mns

")y (__,)s L ({n

o 2 — s ¢
and — 2 -+ E' m* = 0,
==L

mA L s dmr
Hence we have, when m is large, the approximation, asymptotic with regard to m,

log (2ar2%)

. 1 1 m+ /1 1 2
+ 251( T {< _2s+1> 3 +(:2‘-1_ 2s>m23”1}’

log F (2) =
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or log F (z) = — log 2wzt + 2m {1 43 _(:2_”1“1_}
) s:_—/.-(QS -+ 1)@

arge, and that

m?® = ze™* where 6 = arg z.

z

[ This assumes that 1s a large integer, a restriction which, as will be seen later,
can easily be removed. |

Then, when |z| is large, we have asymptotically

log F () = — log 2mst + e~ [2 +Ei,f B ‘w}

The sum of the FouriERr’s series inside the square bmcket 18, When -7 < 0 <,

equal to wer .
Therefore, when

Z

is large, we have asymptotically
log F (z) = - log 2wzt + w2k

§ 51. In the preceding investigation we have assumed that the Maclaurin sum
formula expresses asymptotically the values, when m is large, of the functions
m~—1
log (m!) and 3 n* (s positive or negative).
n=1
Accurately we have of course

log m—1!=(m—4%)log m—m-+lox \/Zn-—}—'mj )%Jd [100‘ (m 4 1y) — log (m cy):!;

m—1 7n§23+1 /}nﬁs ! 1

S‘ 2s
= n* =oia1 " 3 T { pgﬂj [(I/L + )" — (m — w) ] when s is positive ;

12

and

=« 1 1 1 1 r dy ] -
I S — —— e o . -8 e S —2s r g
n-:m e (95 . 1) /”]gs + 2 . 0 o2y [:(m + U/) (m l/y) —]' When S 18
posmve

Hence, in the limit when k is infinite,

) ‘ Lo (=) m™
log ¥ (2) = — log (2a%}) + 2m {1 + WE_,C st i‘j}

+ = r _ ~A{—— 2log (m+ ) + 3 ) l(m * ”)2?}

Lt Jo >y — 1 =1

RD

— 'E j‘ f{l/iv { —9 100_ (7/?, _ L’I/) + 2, (— ) -1 (7;’0 — Lg/)‘ls} )

o 2 —1 o= s

This formula is accurate and holds whatever positive integral value m may have.
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Unfortunately we may not say that the sum of an infinite series of integrals is
equal to the integral whose subject of integration is the function to which the series
of subjects of integration can be “summed.” The two integrals last written down
can then only be evaluated by reducing them to an exceeding complicated extension
of the type known as DiricHLETS integrals. The analysis is utterly intractable.

If we make m? = ze™*, and expand the subjects of integration in powers of z, then
we can say that the last two terms will not contribute terms whose order of

magnitude when z is large is comparable with that of any positive or negative power

of z.  And, as we know, the sum of these two terms is equal to log (1 — (.'“2’”%).
The formulalog F (z) = @2t — log (272%) is thus asymptotic exactly as the Maclaurin

m—1
series for m ! and ¥ %, from which it is derived, are asymptotic. That is, for large

=1

values of |z

, the expression z7 {log F () — @z* + log 272*} for all values of # tends
to zero as |z| tends to infinity. There is, in fact, PorNcArE’s arithmetic asymptotic
dependence.

The preceding example will serve to show the nature of the asymptotic expansions
which we can now proceed to obtain.

§ 52. We consider first the function P, (z) == 11
We have

17

| ———
—
N
)»

] where p > 1.

m 1

@© P s—1 s
2 [z oyl
+ 3 [p-u..-y- ()+]
P SnP*
m a . . . . s I o 1 m—1 .
Therefore, if we substitute the approximations for log m — 11, 3 - and 3 »* given
N & 9 ps 3 =

n=m T n=1
by the Maclaurin sum formula, we shall obtain the expansion, arithmetically
asymptotic with regard to m,

IOg PP <Z) = (Wl - 1) 1ng - p [:(’”L — —) 10(!‘ W — 0 + 100. \/277 + o ( )7._1] v]

1 27 — 1

—_ ?_{if’f + 3 OB

()7 [
p=1 P8~ Zl -l- ]

+ = P+ 1 / . ) e F(m)l

A
ST

( )S"‘lzb '~ps+l )’)Z—ps © (__) MlL /_ )
2 S [ s )0 gy, P81
+ 3 pé—1+ 2 +71ps+‘)7—lx m ’
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or, log P, (2) = (m — 1)logz — p (m — &) logm + pm — plog v/2m

TR R i Qs O I Y S e 2

skt sz ps+ 1 2s2° s=1 sz¢

( )r*lB — Ic, i ( )s—-l ps mps"
+ 21 m-1 127 2 —1 +S__2_L ps — 2r + 1 \2r ;,gg} ’

r=

This expansion is arithmetically asymptotic with regard to m, and the coeflicients of
various powers of 7; are ultimately to be summable divergent series.

Let now » = |z| be large, and such that m lies between m and m — 1. Then the
modulus of mp is a quantity which is very nearly equal to unity. We proceed to
koo (=)t m"s k(= )3 mP

‘sum”’ the series 3’ Z_, and
a*——-lcs (P3+ 1) s=~k 2s 2’

1 d2r— s-l
97 dmﬂ‘l{ plogm + 2 (= ), }

s=— S

. P 1) .
Write ¢ = log ﬁ;i— , then the first series becomes

Sty = g’ (= o =)

s=—% 8. (ps + 1)
Thus
k/ — 1 P .
— I FE R B —_ PRI
f(t)-—-sik( ) {S ps+1}"( N
and a_f,(i) z ( )h F ee(t—w)
P ot = sk p.s +1 ’
So that
of(t s—1,3(t—i6)
Sy =—pZW 4 3 (21

s=—k $

If now we “sum” the last series we obtain

ft)= 8f(t) + ¢ — 20 ; and therefore

S({t)=Ae » 4 t — i — p, where A is independent of ¢.

k s—1
h — — M ( ) e =i
When ¢ =0, f(t)= s_z_k PP T
> J— ! (:).S__ e L’ ( ) PRt
Hence J(0) = S:E_’k . “+p S_E_L oty 1e 9,

VOL. CXCIX.—A. 3 N
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- , ) . /u’ (___)s . T W0
Now, by the usual theory of Fourmir's series, p 4 = Y e = e,
R R sin%
provided — 7 < 0 < w.
Ty . T 19
Therefore SOy == —p e,
. sin
. s w1
80 that f@)y=-"_¢eo o4t —10—np.
sin =
L () ’
. L A ) e me
Hence o= e Jog < -
' s=—rS(ps 4 1) & sin T ™ +log P
- oy (=)s o 1 mn’
The second series X Ge o is at once seen to be equal to — 1og
PESS AppA @

And, since the term by term differential of a summable divergent series is equal
to the differential of its sum, the third series vanishes identically for all positive

integral values of 7.
1

Thus, when |z|” lies between m and m — 1, or possibly is equal to the latter
quantity, we have the asymptotic expansion, while — 7 < argz < m,

log P, (2) = (m — 1)logz — p(m — ) logm 4+ pm = plog v/ 2

1 P 3 -1
+ Tz + mlog ﬂ;" — pm — & log /i 4 E (=)~ o ps) ;
sin - ’ =1 !
l . i —{ s—1 [ Q
or, log P, (2) == ~-zr; 2o — plog /27 — Llogz + E, (=) e 1% &

sin —
[)

Thus, when |z| has any large value, and — 7 < arg z < &, we have the arithmetically

asymptotic expansion

_ : PEDRC L ¢

§ 53. The approximation represents an arvithmetic not a functional equality. It
does not vary with the argument of z, and it exists everywhere in the neighbourhood
of infinity except at points on or near the line of zeros of the function. Not only
so, but at points on the line of zeros of P, (z} which are not in the immediate vicinity
of one of its zeros, both the function and the asymptotic series have arithmetic
continuity, and therefore the equality will hold at such pomts These results accord
with the general theory developed in Part 1L


http://rsta.royalsocietypublishing.org/

A
A

A
A

/\
-
A

'\

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

1\

[~y

/J
A

\

P

/N

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

MR. E. W. BARNES ON INTEGRAL FUNCTIONS. 459

The series for log @ 75<9W)z

exp

can be “summed” by the methods of Part 1L
w -
7p

sin m/p
The function just written tends to zero near its essential singularity z = o, and the
same will be true of the function which we get by any process of summation. But,
in general, the function derived from

I (o)

I M8

8

will not be equal to the function from which the series has been obtained.
-1 — s—1
Since F (ps) = {(--ps), the series is equal to 2, (= ) (14 )j—f_-)ff- de,

the integral being taken round the fundamental contom of § 24.

The series is thus equal to ‘;f; {G (x°z) (@Ldlc where G (z) = E I'(ps) 2"

1)’

The series for G (z) is divergent and of order p. The integral is mterestmg in that,
in place of ¢, we have used (¢” — 1)~! as our auxiliary of summation.

§ 54. We now pass on to consider the most general simple integral function with a
smgle sequence of' non-repeated zeros, whose order is any number (zero included) less
than unity.

The function may be written I (z) = f:[l [1 T d)( )J where :zzl |¢>( o)

convergent. The n' zero, — ¢ (n), is a definite function of n and any finite number of
given constant quantities.

Suppose that if » = ¢ (n), then inversely n = y (»).

Let |2| = R and suppose that m is a large integer such that m — 1 < ¢ (R) = m.

is absolutely

o (14 555) = E 1°g(1 )+ 3 s (14 50

so that if we expand the logarithms in convergent series we shall get

log T (#) = (m — 1) log z — m>31 log ¢ (1)
=1

Then log F (2) =

m

I 8

ml ¢ (%) _ P (n) (— Y1 ¢ (n)
0 _:d‘_ »3 ‘ g—)"‘l a8 -
+ qu [d) (n) 29 (n) -+ () + .. J

NOW by the Waclauun sum formula, if s be positive,

B, d i+

2 (' (n) = ( ¢ () dn — 3¢ (m) + 1 - (). (=) ):)::3) dmgmﬁb (m) -

where vy, is a constant quantity, depending on s and the form of ¢ (), which we have
proposed to call the Maclaurin integral limit for ¢* (n).

o

3 N 2
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If s be negative, we have

=3 H @ = F@ a3 )+ (=) T )+

where vy, = oo, there being no term independent of m on the right-hand side.
And

m—1 Lf+1 C

3 log  (n) = | Tog b () = Flog b () = ..+ (=), 1 g ()

Hence, in the limit when £ =

log F (z) = (m — 1) log z — j‘m log ¢ (n) dn

Yo

[ rem T

8T Iy
—H{ =g a o+ 2[5 w0+ GO0}

3 (—)Diy 1 e _ g ey

(=r
+ 120 o + 21 dmt 1 10g ¢ (m) + 2 sz s=1 5@ (1)

Now, when the limiting values for % = oo of the summable divergent series
are taken,

3 [0+ ]~ g b o)

8
S%

Hence, asymptotically,
it k - it 4)*" (n} dn n E LZ@_,
log F (z) = (m — %) logz — Ln log ¢ (n) dn + El(—-) Uy Y L_g s¢' ()

— (= §) logz = [n 1og $ () + [ n 8

3-SR el P

S (V[ ap )+ [ i e )]

= ~ Llog s+ [nlog ¢ (), + 3 L ()0,
| NN e b ?\}r(t) |
+§Mw> 2 (= ([ w0 I ]
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Now, where s (¢) is a given form, and such that we can integrate expressions like
¥ (t) "1 dt (s positive or negative, but integral) we need only carry out this process
and “ sum” the ensuing series of positive and negative powers of z to obtain the
dominant term of the asymptotic expansion of log F (z). If, however, ¢ (¢) is not
thus formally given, we have to face the difficulty that the lower limits of the
definite integrals are different quantities. The lower limits, however, corresponding
to negative values of s, are such as to give rise to zero terms. If, then, we consider

% () )
only indefinite integrals of the type J P (t) 1 ffl;, and take care that in any trans-

formation of these we do not introduce arbitrary additive constants, we may take
the asymptotic expansion in the form

s=1 S¢% &

+ F)(m) }u?_@ {1 4 %I ((:) " ( —zz" />}

1= HOE N2 ()]

which gives rise to the dominant term of the asymptotic expansion of log F (2).

A —t k17
o0 (2) di <7> — (“>
t

147

z

log F (2) = — % log 2z + " log & (n) dn — 2 iy n) dn
4 g 108 ol

§ 55. It is the integral

This integral is evidently equal to L f
k=om

Suppose now that z = re¢” and take uyu = log < t> the logarithm, when ¢ = »,

having a cross-cut along the negative half of the real axis, so that

e = log —: + m — 0, where log is arithmetic.

Then

1 1o ‘P_(’i)) -
T=1¢t. jlg'{ st 9¢(/ (i ,,))Sln(/c+3)/bdﬂ

k=w %ml/u,

Now the form of the dominant term I does not depend on the quantity log ‘l’( m)

which vanishes when » is sufficiently large. We have then

sin (k + }) p dp
sin & & p

w0
I =1t j' wp{ze® M}
b=

an integral of the type first considered by DirtcaLET.*

* y. “Crelle,” vol. 4, pp. 157, ¢f seq.
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The theory previously developed in Part II. tells us that this integral must, qud
function of z, be independent of #; in other words, when — = < § < mr, that

4 sin(k + 4 p
Lt ( Wi {ze® ) ”*—*T-ZEL
b= w0 Sin bl /J,

dp = 0.

But this is precisely DiricHrEr’s result : we thus have a valuable verification of
our theory.

Finally, then, the dominant term of the asymptotic expansion of log F (z) is the

function
sin (£ + 3) p

S == Lt up e ey .

Sin g

g

Since we may evidently change the sign of + without altering the value of f () we
have

Flo) = [HEET =) it b

2 sin & @

dp.

k=w»

Now 1 is the function inverse to ¢. If, then, we suppose that { and % are
determined from the relation zet™~# = ¢ ({ 4+ ), principal values of inverse
expressions being taken, and { and % being functions of z and p, we shall have finally

= Tt S e ; m in whi ite 7z
f(z) = zI:f, f T il dp, as the simplest form in which we may write f(z).

There is no doubt that it is possible to construct functions ¢ (n) for which the
preceding analysis will not hold good.® It would appear, however, to be applicable
to most of the types of functions which would ordinarily arise, and a more accurate
investigation will need the exquisite finesse of certain developments of the theory of
functions of a real variable.

Note that, for the case in which zet™ # == ({ — 1), we have established that

f)=-"- 2.

s —
r

§ 56. The dominant term f(z) of the asymptotic expansion of log i1 |:1 + 4;27{):]

takes a very simple form for the case in which s (¢) can, when 7 is large, be expanded

==l
in descending powers of ¢ in the form

!
t

{f{rQ
fﬁ e o

U (t) = tr]; [ao + ] , where p > 1.

We have the asymptotic expansion

m—1
* We have assumed, for instance, that we can apply the Maclaurin sum formula to ¥ ¢ (n), and,
' 1

n=

therefore, that the conditions of § 41 are satisfied,
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toge + ("log(n)dn — 3 VMg (n)
—3logz 4+ | log ¢ (n)dn — ¢(n)(u

N "«b(m)«y(t) dt {1 + 2 <( )t +(—tzs.§?>}.

/

Since ¢ (m) is a very large quantity we may utilise the expansion of (). The
integral last written is, therefore, equal to

Tiwﬁm%t{b+zC>F+(xw}

/I+1'—"" ¢
= 3 o ! + é/ (=) ¢ (m) = t
- L .

=0 o () 1 "‘p = §— 7+ -

. = 1
=§”ﬁ,gwé_0ﬁmﬁ ﬁ

=V ¢ (m) | sin
sin —
— _17;/,, [ ¥ (— /)]
sin — — 2)p
AR

If, then, we introduce the Maclaurin constants, log ¥y = j'w log ¢ (1) dn,

= 1,
== | (— )" [n *71-; ze ‘

-~ K, = f B ¢* (n) dn, we shall obtain the asymptotic expansion

@ A S T I : szi_ ‘l’(;‘ft) ( ) l:E
»,El l:l + ¢>(“)] = e {sin m l:(“ ZW)] i 2 < }
P

Such values of the many-valued functions introduced are to be taken as would be
indicated by the analysis.

§ 57. It is evident that the investigation of § 54 applies to all simple 111teg1al
functions whose primary factors need no exponential to ensure convergency. Thus

it includes all simple functions of order l, where p is real positive and > 1 with
P —

algebraic zeros. It includes all simple functions with non-algebraic zeros of the type
given by a, = [an® + bn* + . . .J(I'n)°, where 7 and p are both real positive and
> 1, o is positive or negative; where ["(n) denotes log {log {...n} }...}, these
being 7 repetitions of the logarithm, and where p, p,, . . are decreasing quantities
tending to — oo as a limit,
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But, because of the validity of the Maclaurin sum formula, it includes simple
functions with very rapid convergence—such as those for which

o . en

a, = ¢ X (\function of n of lower order than e¢ /.

§ 58. We can now extend the result which was obtained in § 52, and find an
asymptotic approximation for a simple integral function with an algebraic sequence
of zeros, that is to say, of a function of which the »n™ zero, — a,, admits, when 7 is
large, an expansion of the form @, = n* + bn*~ 4 b= 4 . . ., where p is greater
than unity and the quantities e, €, ... are real positive and in ascending order of
magnitude.

We take @, = ¢ (n) = r so that, by reversion of series,

N, 1—2 b2 v p 1o
no=1r— g g PTLT28 5 . é 7 oe --—;iw P = U () (say).

Since, when s is positive, we may expand «,’ directly by the binomial theorem,
we have, when m is large,

i

1 m=—1 J w o
2 o, = 2 [n”é —+ shyn + 1 5 e e shgn e L ]

= ("¢ (n) i+ F (ps)+ 50, F (ps — &) + 5 b F (ps—26)+5b, F (ps—ep) + .

¢ (m) (=) By @™

+ 20 25 + 21 dm2t+l (;[)S (’I’)’b)

" s ' T ¢ (m) | 2 (=) By &P
= ("6 dn 4+ F (o) + B (poss 3 )= P 2 IR T e ),

where Z <p, 83 Zl’ bg > is a definite finite quantity vanishing with. the quantities b,

which can be expressed in terms of a series of Riemann { functions.
Again, when s is positive,

3 e $7(m) g (=B B
w=m (;M(';L_) =7 ] ¢ (77/) dn - ‘“é_*‘ 120 2 +2t+‘] d?nﬂ”l ('b (77&).
And B s (ol bbb
n = log ¢ (n) = [p ogm b=t 0, -i

n . 0.2 .
= f log ¢ (1) dn + %log 20 4+ b, F (— ¢) — ;F (— 2¢) + 0, F (— &)

log ¢ (m) (=) Buy @
- 9 + tzo (2t + 9)1, dm2t+l log 4) (m)

and we shall put Z <0 ; 211’ 2‘;’ > =0,F(—¢)— I (— 2€¢) + 0, F (— ¢) + .
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If now we substitute in the general formula

log F () = — b log 2 + [ "log ¢ (m) dn — 3 0= "9 (w)

PO (5 2],

s=1

we shall obtain  log F (2) = — & log z — _g

_ G TN
log 27 Z<O, b bm.”>

o (sl » —~)s-1 ’
+E( i (ps)—l—E(——) Zp,s;el’eg""
1 e =1 2 bl’ 627 [

#lm/ 1 g 2 1% ol z
p

2
Y s= =1

And when we sum the Fourier series which result from the last integral, we find

) . ) P 'e,eg,...\
logF(z)=——%1Ogé—-710g277“z<0: bibz:--

w (—)5—1 0 ()1 e
+ 2+ 2 (e s )

+ T ! bym 2 p wh? p+1—2¢ 2 p by Z e
e P — —_— - A —
l 3
. . — € 2 e — €
sin —— P ging=—"9 P sin 7r 1 P sina 2

§ 59. This expansion is valid for all values of any z which lie between — # and .
It is arithmetically asymptotic in the same way as the expansion from which it is
derived.

We see from the results just obtained that the asymptotic approximation for

log il [1 + j - ], where @, = n* 4 b~ 4 . .. exceeds that for log I [1 + —f:] b
=1 4

n=1
€1, € « ..

a quantity whose first term is — Z ( 05 %
1 O v vt

> when ¢ > 1, and by a quantity

whose first term is

1—¢

bz

P

, when ¢ < 1.

. —q
sin 7 ———
P

When ¢, = 1, the difference of the two asymptotic approximations commences with

. . ‘ b 2 . . .
the indeterminate form — -1 | - —" , which arises from the integral
- p sSin W&_;gzo S
I3 r m d { (=t
ZI \ o }
; + 3

VOL, OXCIX,~—A., 3 0
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But this integral is equal to

log ¢ (m) + _E’L (= )j (m) = log ¢ (m) — log [1 -+ ¢ )} + log [1 + (;()J = log z.
Thus, where ¢, = 1, the difference of the two asymptotic approximations commences
with the term — bp~tlogz, a 1esult which may be obtained without much difficulty
by elementary algebra.

Note that — b,p™! log z is the expression obtained when we reject the infinite part

. =b 2, .
of the function ——Pﬂ- gig;é for # = 0, when expanded in powers of 6.

AN
G TR

S ) which, when ¢, > 1 1s the first term of
by

the asymptotic expansion of the logarithm of the ratio of our two products is

Note also that the constant Z <O

equal to S log ;%
n=1 )
By means of the formula x > log (1 4 =) > i? , where @ is a real quantity lying

between 4 1, we may prove that this series is absolutely convergent when p > 1.

Application to Functions of Zero Order.

§ 60. Hitherto no example has been given of a function of zero order, although the
general investigation of § 36 applies equally to functions of this nature. In such
cases it becomes necessary to introduce Maclaurin constants of a complexity which
seems, except in special cases, beyond the reach of present analytical processes. They
can no longer, as for functions of finite order, be expressed in terms of RimMaNN’s
{ function nor, I believe, in terms of any functions which have so far been introduced
into analysis. An example will now be given of a very rapidly converging integral
function. It obviously would serve as the starting point of a series of interesting
researches dealing with the classification of simple integral functions of zero order.

61. We propose to obtain the asymptotic expansion of the function i [1 + ;”J

n=1
In the notation of the general theory we have now ¢ (1) = ¢

Therefore log ¢ (n) = n; 7’51 log ¢ (1) = m_m

- o e
=1 -)J 2

P

By the Maclaurin sum formula, if' s be positive,

m—

B,
2 a— j e:zsdn _|_ C 9 + Z’ SN em

where C, is the Maclaurin constant corresponding to ¢, which may be determined as

in § 84, If we put jmc””c‘ln = ¢"™/s, we have C, = (1 — ¢')7L,
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If then we carry out the general process, we shall obtain the asymptotic expansion

/P ), & $—1

{ ( — )s—l mn s oms’
5 -]

m s—=1(% k -1 ng oms
= (m — 1)10gz—- ~2~ + 2 5 L4 2 (=)7C ) < 4y (_‘.)’*, (9__‘ - _‘_)\>'

=1 s=—p 82 S 2

As before, we have to “sum” the final divergent series. We take |z| to be a

.large quantity such that is very nearly equal to unity, and then we consider the

81  pibs £ifs
Fourier series 2’ (=) ) {w - A_},

s==—k s 2
5— 2 s—1 s 2\
But 2/ ( ) ¢ = 2 ) 3'2003 S %(92 _ %)
s=-—k S s=1 \
103
and ¥ N = i

Therefore we have the asymptotic expansion

tog 1[14+ 2] = (m = Dloge =5 4+ + 2 CC 4 3 1og T [ 4 = 2log
© 2 w (__}-1 C,v
or finally* log T0 |14+ 1] =3 Qlog 9 =} log e+ + ¥ F7°

§ 62. It should be noticed that if, in the function whose asymptotic expansion has

thus been obtained, we substitute ¢ for z, we shall obtain the function TI [1 -+ g]

=1

This is an integral function whose zeros are of the form

n =123 ...0.

p=nt (Zm_ 1)m{m= -, ...,—1,0,1,...00

It is substantially what T propose to call LaMBERT'S function.  The function has
properties which are a sort of mean between those of the elliptic and double gamma
functions.

We can express LAMBERT’S function as a product of two double gamma functions.
It 1s closely connected with the well-known LAMBERTS series, and in terms of it we
can express in a very elegant form the coeflicients of capacity of two spheres.

* The dominant terms of this result are equivalent to those given by MELLIN, ¢Acta Societatis
Fennicee,” t. 24, p. 50.

30 2
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§ 63. The reader will notice that in the preceding analysis we have used the
methods and not the result of the general formula.

The reason is that with an exponential subject of integration we are unable to
ensure that we do not introduce arbitrary additive constants when the indefinite
integrals are transformed as formerly.

For in this case ¢ (n) = ¢* and ¢ (n) = log n;

b () \I/‘(t)(llf

and we have to consider a series of integrals of which the first is J ;

We are tempted to say that this integral is equal to
F -lggm[?—(zﬁ)vﬂf-l—t = r [log ¢ (m) + log t} d; =0,

whereas we only avoid introducing an additive constant by saying that

Ylog [ (m) t] di )
[ 2 EE = 4 log® (6 (m) )] = & [log ¢ (m)

§ 64. The integral function just considered is the most simple function of zero
order. In carrying out the algebraical analysis of a theory of such functions, it would
be necessary to consider the types

%Ile [1 -+ ;;7} , ;Ex[l -}- eee} &e.

The asymptotic expansions for these successive functions are of successively lower
orders of greatness—they are never, however, of so low an order as z*, where n is
finite. This agrees with the known theorem that an algebraical polynomial is the
only uniforn function of such an order. Unfortunately, unless we introduce new
ianalytical functions defined by definite integrals, we cannot investigate formally
asymptotic approximations for such types; and until the properties of such new
functions are investigated, we but express one unknown form in terms of another.

Simple Integral Functions of Finite Non-integral Order Greater than Unity.

§ 65. In the investigations to which we now proceed of simple integral functions of
finite non-integral order greater than unity, the theoretical considerations which
have been given in detail for functions of order less than unity will for the most part
be suppressed, and for brevity only the bare analysis will be written down.

4

<1 + w) R i

We consider first the standard function Q, (z) = i "
1

where p > 1 and p is an integer such that p + 1> p > p.
Let z = Re®, and suppose that R is very large.
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Take m an integer such that m — 1 < R .

o =1 ) 2\ _,,]?/,_ . +,(_>_./:A,
1 hen QP (Z) = ]I 1 + ;;1‘/;) ¢ P p PP

-1 [ 2 =1 - (j@p
so that QP (z) = Il |1 - 771/‘; X II| e o' paPlP
=1 n=1]_ _
- (—)pzi]+1 (__)77+15p+2 -
S N - A
T +1)ya P pE+2)n P .
X I | elthn (p+2)n '
n=m!__ A
1 =1
and hence log Q,(z) = (m —1)log z — — 3 log n
P =1

o
= 8%

m:l _nl"p (_).\'—1 nxfp . -
+ 3 J

! o pn2ie

n=1 {_ /”‘ ?

Ty (e
R B el —
-+ ”Em C(p+Dar (p+2)n -

Now, when i is a very large integer,

B <:-_>‘___.< = )1 T

asle T —_ )
n=1 WP 1" e =2t =1
P P

And, when s is positive and greater than p,

'

o 1 ant—sle mTe =) — B

n=m %é/b - 1 8 2 _S 9 —1 P m‘3t~£ + 1
p P 2t 4 2

We use these Maclaurin approximations and rearrange the double series which
results as the arithmetically asymptotic approximation for log Q,(z). We obtain,
in the limit, when the limits of the summable divergent series are taken for £ infinite,
the asymptotic expansion
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. 1 1 n 1
log Q, (z) = (m — 1) log z — N (m — %) log m — T2 log 27

L)

S=-—p SZA P

s“]gp'}‘q\.\z/ t=—k S Z

PE T B fO0ty (o i
+/§o 2 + 2 mrr | + = S ) Al

g e S < J

We suppose now that 5 l i 5 18 a quantity which, when m is very large, is ultimately

equal to unity. Then we may “sum,” as before (§ 52), the Fourier series, which are
the various coefﬁcients in the preeeding expansion

P Gl S 2 N S 1 : : . i
We have p E_L Ry (\ ) = snay m + log — . provided p is not integral,
. ‘ (7—)‘"1 Jatl\g _ 1 nle
and provided — 7 < 0 <@ And — A = — Llog ~ -
8——-—/ S k\ z 2 = 2

Also, exactly as before, the coeflicient of B,,, in the asymptotic approximation
for log Q, () vanishes identically.
Therefore we have, provided — 7 < 0 <, the asymptotic equality

2 1
log Q,(2) = (m — &) log 1, —m — § log z — 5 log 27 + 2/ (=" g /P>
: 9 A \

mliv m mle

——Ftmlog — — — — L log — .
+ sin 7p + 2 p 70z

Thus, provided — 7 < arg z < 7, we have finally

log Qﬁ (Z) = "-”“’L —_ »‘)1 i 10 - _+_ 2/ ("‘) -t F( >

sin mp 2p PR

This expansion is exactly analogous to the one previously obtained for log P, (2)
and is to be regarded in the same way. It must be borne in mind that »'* has been
assumed to be the arithmetic p™ root of n. Had any other root been taken—say

. . T 2mer . .
the arithmetic root multiplied by @ = ¢ ——, where 7 is an integer, we should have
P

obtained the asymptotic expansion

Q,(2)=ce¢ @7?,, " exp {gz‘; + Q:)*fl e (_;)}

s 7rp P sz*

2y

valid, when-—-ﬂ-<0—-~7; < 1, t.e., when —7r+—~ <t9<7r—|—

The expansion is thus valid everywhere except along the new 11ne of zeros.
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§ 66. We proceed now to investigate the asymptotic expansion for

— —

2 Tt T )p 1
-} @ an p%p \ ’
_

where @, is such a function of n, ¢ (n), let us say, that s ‘,+€ converges, and 5

n=10 n=10n

diverges, however small € may be, p being real, finite, positive, non-integral, and
greater than unity, while p is an integer such that p 41> p > p.

Suppose that the result of reversing the equality » = ¢ (n) is to give n = s ().
z|) =m.

p—

Let m be a very lar
As previously, we have

m=—1

log F (2) = (4n—1)log7—210g¢()

I

=1 8%

ST (—)rer
T Z[ s T e <n>}

o (...)le”'” i _)fjl 2pt?
n§m [:(2) + 1) (I)II-H (71) + »+ 2 ¢ A (n) + ] '

-+

Substitute now the arithmetically asymptotic approximations given by the
Maclaurin sum formula, and we have

log ¥ () = (m — 1) log z — _[ log ¢ (n) dn + & log ¢ (m)

+ 3 S p e — gz OO

-7 s~° sz

o ( )t I;l-lr] d2t+1 ) , ( )b—l dzt’i' s
+ 5 (2¢+2)! T dmpr 10g (/) (/n) + 2_,v. sz dm+t (m) ’
In this expansion y_, is infinite, and there is no corresponding Maclaurin constant
if, and only if, s > p.
Use indefinite integrals and transform by integrating by parts in the same way
and under the same restrictions as in § 54, and we get

log F (z) = —%logz+j log ¢ (n) dn + 2'( )f ¢’ (n) dn

sm—p 52

n F(m) 11,~(t)dt{1 + é (—,0}

$=—k
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The final integral gives rise to the dominant term of the asymptotic expansion.
As formerly, it may be written

"o oy B0,
s 5 gind S

It we denote the value of this integral by f'(2), and if’ we put

‘(Wlog ¢ (n) dn = log F,, ‘(%q&” (n)dn = F,

we h.swe the final asymptotlc equality

o P =z 4., «) ® /ﬁ)st
,}L{<l ) e = Fy o {f( )30 }

§ 67. We notice the exact analogy between this expansion and the one previously
obtained in the case when the order of the function is less than unity. The only
difference arises from the Maclaurin constants. In the former case, all the constants
corresponding to negative values of s were zero; in the present case, the first p of

. . . m=-1 1 in
them are formed from asymptotic expansions like 3 - = g ¢ (n)dn 4+ ..., and
n=1 tn y—s .

give rise consequently to finite constants ; while only the remaining ones, formed

from expansions like — 2 -1-3 = (1 ¢~ (n)dn + . .. are such that y_, = .

a=m B
We notice also the great elegance with which WrigrsTRAsS' exponential factor
enters to ensure the finiteness of the expressions obtained in the course of the
analysis. Could we conceive an attempt to investigate, for functions of order greater
than unity, the theory which we carried out for functions of order less than unity in
the first paragraphs of this part of the present paper, we should at the outset be
forced to invent again WEIERSTRASS' great theorem.

Application to Functions with Algebraic Sequence of Zeros.

§ 68. We will now evaluate the first few terms of the a,symptotic expansion” for

()P

% -2
11 1 + —1e ™ pay?
e N an

P =

, where «, = nr), 1 + s + - 2 ] , and the

€'s are positive real quantities arranged in ascending order of magnitude.
Let » = @, = ¢ (n), then on reversion of series we find

n = 1/;(7) — P pbﬂ“’(l‘fl) + {P_(P_“l” 12 2pey, Z) } Pt ol p=e) 4

When s is positive,
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m~1 m—1 3 — s —1 8 —2q L.
S a=3 {W + sb, o + sﬁ?“) by2ne g I S ]
n=1 n=1

i
ey

" g (n) czn+F(> sblF<;~_el>+“<s- 1)52F<~»—zel>

+ng(w ——-c2>+..

d(m) | 2 (=)D, @&
— 9 + Eo 9% + 21 dm2 B (m);

m=1 1 m—=1[" _ s e s(s {-T — 2 -2
and ¥ - = ¥ [n p—shn ¢ ( ) R N A R

n=1 [n =1

= "¢~ () dn+Z<p, _s; j P+ T (\ p> — &

(=)Buy @
+ %0 T T K A COR

\

/ .
where Z (\ P, — S; b b ) can be expressed in terms of Riemann { functions, or the

equivalent Maclaurin constants F by the formula

4o =i 5] = b (= — ) £ (= ) )

/

— B (=) .

\ /

el

As formerly, we put
Z<0; le> =BT (—e) = ) F(=2¢) 4 bF (= )+ ...,

so that g log 27 4+ 7 (0) arises as the Maclaurin constant corresponding to the

=1

asymptotic expansion for ¥ log ¢ (n).

n=1

Proceeding exactly as for the case when the order of the function is equal to unity
we see that the asymptotic expansion of log P (2) is

T — tlogz — log 27 4 s (= )—1
S ap 2 s=—p % P
TP e 4 PP L= 2pe) g ™ ez
sinmp (1 — ¢) ; 9 1 gin 7p (1 — 2¢)
= 7pby  La-e a2 (=), 6, 6. )
sinap (1 —e) +"'+33~p & Z pf'g’bl,bg..,

/ €1, €y 0 v s
— 7 KO E ,
by, by .
this expansion Leing valid when — 7 < argz <.
VOL. OXCIX.—A. 3P
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Thus, when p — ¢,p > p, the first term of the expansion of the ratio

‘ P (~z)”m

» z T ST

11 (1 "I— > [ pa,? |
|

log —2=l b fa . = g A.A.,_,.:JI'EEL,AM o (=e)
S N . (=P | - sinmp(l —€) ’
K2 BRSO NP B 1
,,TI_IU <1 + n”P> ¢ P PP
. (—=)rer o, €, € ... . .
And, when p — ¢,p < p, the first term is ) Zi{p, —p; b, .. ) which is readily
— 2P = 1 1

seen to be equal to (=2r D “:-;,:1 .

! P il )

§69. The expansion which we have obtained is valid for all points except those near
the line of zeros of the function and for all finite values of the quantities b and e such
that «, has a finite value. It must be carefully noticed that when any term becomes
infinite through the occurrence of sines of integral multiples of o, we must revert to
the genesis of that term to find the true form of the expansion. Thus, when
p — pe = p, the first term of the ratio just considered is that which arises from

—vp [T iy SO

§=—I 4
that is, from
erom) | iy (Y (m) oy, ]
—byp {0 o x CTEE p (—aptog g ()}
where the double accent denotes that the terms corresponding to s =0 and s = — p
are to be omitted from the summation.

" . . .
Put now — = ¢7”, then, with the argument previously used, we have to sum

the series

1 4
— bypg? (m) {]7 + SEH -

-2 S+ P

+ (= e log p(m) |
Now, when p is not integral, we have seen that

1 Lo (=) ™ j0 :

- Yoot = e provided —rmrz=0=m

P 18+ p sin 7p

Let us put p = p + ¢, where p is a positive integer and e is very small. Then we
have, retaining only first powers of ¢,

1 *]// (—=Yye® (—)1’ opio o Y -
Y S 24 o}
P —I— sE—k S +p € (‘_),, are ¢ []- I’ EZﬂJ,
so that
1 7; (_)‘f e si0 »
Ly O e,
P + s=—k S+ 20 ( ) '
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The term which we seek is then the value of

— by (m) (=) {0 | Tog 2 = (=)0 p20log=

.. . . . — apb .
This is, of course, the term independent of @ in the expansion of —— Lt zp+¢ in
bl 5
sina (p + 6)
ascending powers of 6.
In exactly the same manner, if p — ne, (say) is an integer, the corresponding term
of our asymptotic expansion must undergo the same process of evaluation and will
give rise to a logarithmic term. If one of the €’s, say €, is equal to p, we obtain In

the asymptotic expansion a corresponding logarithmic term

— pbilog 2.

Semple Integral Functions of Finite Integral Order.
§ 70. We proceed now to consider the standard function

-z ( )I’

© 2\ =z
R,(z) =TI I:( 1+ h""’) etle ™ e p] where p is an integer = 1.
n=1 \

Let z = re’, where r is very large, and let m be a large integer such that
m— 1 <17 =m.
Then, employing the same process and argument as before,

log R, (2) = mzl{l/p+ 4+ & )“3"’4-...}

n=1

mn—1

— U B . L (=2
—|—(m 1) log # , Elogjn—l— 2 {nl,p—l—...-r»?u}

plp

P

N R A +](
ﬂ*ml( +1)np (p+2)inTLZ

Now, when f = 1,
P
m—1__s/p —\¢
. = ym' + m"*’ logm — 4 4 ... + N God Y S B_;;r:ll + ..
n=1 77, _ i -9 —1 P m
P 2+ 2
and in accordance with the definition of § 49 we put y = F (— 1).

If, then, we suitably modify the analysis formerly employed we shall obtain, when
3 p 2
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the limits of the summable divergent series as & tends to infinity are taken, the
arithmetically asymptotic expansion
1
log R, (2) = (m — 1) logz — —{(m — &) log m — m + & log 27}
p .
© — )1 ~1 s/p
-+ 3 ( )3 < >+ m 2” ( )b .-?,I_L__,
s=—p S s=—lk 52 + 1
p

+ QZPQ:—P logm — % 27’ )

s_—l sz

OB L [=@) ) & (7 [0 0]
+ tzo ot + 2! 77@3”1{ P +3L/ 8z ' (Zx2l+lm REMY ’

where the double accent denotes that in the corresponding summation the terms for
which s = 0 and s = — p are to be omitted.

As before, the coefficient of B, vanishes identically.
N ’ ( ) - s, M’ p
The series 2 -m'* is equal to log -~

szl sz’

. . . c oy (=)

It is then only necessary for us to consider the series % B
PSS e ;;+ 1

. 9 1”") . 4 e a B N
If we put ¢ = log ™~ , we may write this series in the form
%

szl sm=—I S s -+ P

S() = s —(Z ):1% G (— )s—less<} b >

Remembering that a summable divergent series may be differentiated, we find

FOy ==+ 2

8

PO+ pf )= pt 4 (=ye.

Therefore

f(t) — Ae™# 4+t — % + (.___)p—-l te-—pi,

where A is a constant of integration.
Now when ¢t = 0,
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and, by putting § = 0 in the FouRrIEr’s series which we considered in the preceding
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-1
paragraph, we see that this is equal to — - + (=r—

P
Therefore
£ = (=yre T+ —
P p
so that
2”( =) = (=)L’ & _|_10 Z’L + 1o _’ZL L
s=—1 s’ m g g p

Sy
p

Revert now to the asymptotic expansion for log R, (2).
We find on substitution that

log B, (2) = (1 — 1) log 2 — i {(m — 1) log m — m 4 & log 24}

CE by 4
1

+ m (10g ! ~ .

\) + (_P/)p log m — % log 3'5—
And thus, when p is an integer, |z| very large, and — 7 < argz <,

log R, () = -
$==—p §%

As formerly, this expansion is, in form, independent of the argument of z.

§ 71. We may easily deduce this theorem independently as the limit of our former

results.
Take the asymptotic equality

1™
=P~ T

g L T
4 T e p—1 Ellnn'p
<1+g17;>6 " i = (27) %2 e ™

p—in P

;I (")’—l 7 (

s=—p+l  gf

where p lies between p — 1 and p.
Put now p = p — €; then R, (2) is the limit, when e vanishes, of

B _—— 4 + (:'A)f:l Dl
L] p‘—l »n '—p—
I (1 + n?PE p—inP—¢ X I epnp'"
n=1 \ n}, n=1

s

P

— slogz 4+ s (= )’_F(> zil;log‘zhr+(—z)Plogz+(_.)p—1%.

),
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It therefore possesses an asymptotic expansion which is the limit, when e

)

vanishes, of

277)_2_5)_;:; - exp{' - +(—z)ﬂ(é<pie>_|_ :g, (=)~ F(

sin 7 (p—e) P —pp1 &

:(277) 2177 §exp {(_ 4)1) 10g4+(— 4)1 ('}’ 1)+ g, (__) ~1 < }

s=—p+1

= (277)”_152”5' exp {(" Z)P,log 2+ (=) v + ¥ L <27>}

sz=—p SZS

remembering that F (— 1) =y, and that Lt [C (s) +
s=1

when s = 1.

{ _1_ J = v -+ terms which vanish

We thus obtain the same asymptotic expansion as in the previous paragraph.

Note that we have obtained our expansion by making p increase up to the nearest
integer. If, on the contrary, we make p decrease down to the nearest integer, there
is no breach of continuity in the introduction of an additional exponential factor.
Thus we have

— ] e
. P
R R O A
1 p

e=0 n=1 b e |
nlte |

and therefore we have the asymptotic expansion

N - e S (=7 < , ‘L\}
R,(») = Ein (2m)”~ 2p!— 27 exp {sm ST + S:),_p s F P e) .
Now, unless s = — 1, F(s) = {(— s); and therefore we have asymptotically
1 . X
N - (=2 A +eloge+..)  (=5)F ([ P
R,(z) = GI;% (2m) " e 278 exp { P + » e\ Dt e

by e >}
s=—p+1 52 P+ €

— (27,-)"?‘15 2% exp {( )p 1Og 5 + (—"/)f (')’ 1) + §/ (:)_‘:TF<S>}’
s=—p+l % p
the same expansion as before.

This paragraph is instructive in that it shows how the asymptotic expansion calls
for another exponential factor in each term of WrirrsTRASS product as the order
passes through an integral value.

§ 72. If now it is desired to construct a function which is the natural extension
among simple integral functions of the ordinary gamma function, we take

8 () s pl s
_]:“=esjl 3 JSB( ‘8’) Z.

(= p) B

i?':is

[~ z I
| P -

1 + 7_7’.%> e LP/p ‘l
L Q 2

1
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And now the asymptotic expansion of T (z|p) when |z| is very large and
— < arg z < w18 given by

_ ® (=) > (=2)°
(o 2 BTG

When p = 1, this formula is exactly the asymptotic expansion of T"(z) for complex
values of z, which, as stated in § 3, was first obtained by StIELTIES.

For, when s is an even positive integer, I (s) = 0.

( ) BtH

9% 49 =0,

When s is an odd positive integer = 2¢ + 1, let us say, F (s) =
And F (—1) =y. L
Thus, when p =1, T' (z]p) becomes T' (z), and the series 2 ( ) F( j becomes

P/
g (YD 1
02U+ 1.2+ 20

§73. It is 0bv10us that we can now at once write down the asymptotic expansion

,» which accor ds with the usual result.
(=yar 1 b b,
for G(z) o= II [/l + ~—> Wt ], where @, = n? [1 +hlé}+;{:2+---] and
p is an mteger from the corresponding expansion for the function in which
1
o, = NP [: o + ] and p is not integral. The €s, of course, are assumed to be

positive and in ascending order of magnitude.
The result is

tog 1 [ (14 )70

2P - ’
= (=) e log 2+ (=)0 — 4 log s 10g27r+ s Sy <p)
: s=—p 52 ;
’ p_ " prl P - 1P (p + ] - 9.2961) ’71" A2 D
+(=) sin 7pe, +(=) by sin 27rpe, ¢
p» P p—ep ’ ( )’g / L€ € > -7 L€ €y
( ) Sln7r?9e,7 +. +,Ep sz 7(\.29’8’1)], by. .. 7<P’O’Z)l,b2...>’

provided 2-051, p:: .. be not integral (n =1,2,... ).

Thus, ¢ not being integral, the first term of the asymptotic expansion of the
quotient

T—[ /1 + 7«) —ﬁ+...+(—)ifp}
{K [22% e . (—:) Z €, €3 .0
B e P p>ps by, by
Iip &0 7 g
<1+ > Iy
1{ n?

We note that Z (p P b" Z“’ \) = % [1 — 1]

log
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When pe, is an integer, we see on evaluating the limit which arises, that the
dominant term of the asymptotic expansion is still the one just written down. For,
in this case, the only other term which might be considered first in the asymptotic
expansion of the quotient is (—)”*!'pb, 2?7” log 2, which, since ¢, is positive, is of
lower order than

Srenlee)

§ 74. Tt is now evident that, if we are given any simple function of finite integral
order, we can find its asymptotic expansion. The analysis just given solves
completely the case of algebraical zeros. When the zeros are not algebraic we may,
and, in fact, we shall have to introduce new analytical functions defined as mdeﬁmte
integrals ; but there will be no essential difference in the theory.

It should be noticed that just as we have to take the principal values of the
algebraically many-valued expressions which occur in the asymptotic approximation
for functions of non-integral order, so we must assign principal values to the
logarithms which occur when the functions are of integral order.

Parr TV.

The Asymptotic Expansion of Repeated Integral Functions.

§ 75. As has been stated in the general classification of Part I., an integral
function, which is such that its ath zero is repeated a number of times dependent
upon n, is called a repeated function.

If the number of sequences of zeros be not infinite, the function is called a semple
repeated function; and it is vbvious that such a function may be built up of
funttions, each of which possesses a single sequence of zeros.” We shall limit
ourselves to the consideration of such functions. The order of simple repeated
functions with a single sequence of zeros has been previously defined. Taking this
definition, we consider, in turn, in the ensuing paragraphs, functions

(1) of finite (non-zero or zero) order less than unity,
(2) of finite non-integral order greater than unity,
(3) of finite integral order greater than or equal to unity.

And, finally, an example is given of the asymptotic expansion of a repeated
function with a transcendental index.

Inasmuch as the principles which underlie the analysis are exactly the same as
those which have been previously discussed, we shall give but a bare outline of the
methods by which the results are obtained.
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Svmple Repeated Functions of Finate Order less than Unity.

§ 76. The most general tunction of this type may be written

=1 ()]

A A

OF

A

OF

where the principal value of each term is taken when u, is any function of n; and
where a, 1s a function of n which increases without limit as n increases, and which is
such that 3 p/a, is absolutely convergent. The function is of finite (or zero) order
n=1
less than unity : and, when g, is an integer, its #™ zero is repeated p, times.
We take
a, = ¢ (n).
When r = ¢ (n) we suppose that inversely » = y(r). Suppose that z = Re”, then
if we take m to be a large integer such that 1 — 1 < 4 (R) =m, we have
n—1 m— n—1
log F (z) = HEZIM,, logz — = ,J,ﬂlogqb(n) + 2 w. log <1 + -—) + 2 wy log (1 + >

We carry out our analysis in a manner which depends exactly upon the argument
previously employed in the corresponding case for non-repeated functions.

We have at once, in the limit when £ = oo,

m—1 k s—1 $
log F (z) __logz 2 P — 2 wdog ¢ (n) + = ? (—)M) +3 3 )
=1 s=1 n=m s=1 8¢ (n)
Now, if s be positive,

ot s N s d 1 s ¢ Bt"'l ar s

2 ' (n) = LMd’ (r) dnn — gpnd® (0) - o+ (=Y 5,7 o b (1)
where v, is a constant depending on s and on the forms of u, and ¢ (n).

We call y, the s Maclaurin integral limit for w, and ¢ (n). If s be negative, the
previous expansion will hold, but in this case y_, = o« , and the constant term vanishes.
Again we have

2 palog ¢ (n) = L pulog ¢ (n) dn — & log ¢ (m) + .
Bt R+l
+ (—)l ot ++2)—I dmrttt lumlogd) (m) + tt
and
,12—1 _ m dn 1 + + ( ) Bt+1 dt+1 +
n=ll“‘ﬂ - J;J"‘ﬂ o Mm o - % + 21 dm%“ o e

VOL. CXCIX.—aA. 3 Q
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We shall find it convenient to put
j,,‘% dn =y (m), so that (W,u,, dn =y {g) = -~ M (say).

And now, if the limiting values when £ = = of the summable divergent series be
taken,

log F (2) = log # U a4 M — ';j“‘«'/z]

— j’m/,l, log (f) (n) dn -+ /gl 1Og QS (m)

il =
Yo
/;" <_ >.\‘ m 1 i "}
-2 ( pap” () = 5 ()
g=1 o= ooy

+ o (=), rL S
- - y—s §'(1) 24 (71/,)_J

2 (=) By AT , o w (=) [ padt () it |
+ 30 2+ 21 dmerr | P log ¢ (m) — pu log 2 + ‘“}] I S e S

The last term vanishes as for the corresponding case of non-repeated functions.
After reduction, we have

log F (z) = log z UMMH dn -+ M} — (m,uu/, fog ¢ (1) dn
wf < Y\)

¢ (o) [ b () o g
+ % . l(v dn — L»_.e () mz}

Yo BN ey ) )
= M log z + [ wolog o (n) dn + = &(,;:‘)y \ patp® (i0)
J g=1 S% J .
hm) |, AN . I R
[T ey 22

The last integral

sin(h 4+ D

e Tt o i\ 7 P12 v
- ]Lzl’f s X [S’( “e )] v ([¢ ¢in 195 f (“) Hay.

If then we put log F = .'(W;L,,, log ¢ (n)dn, F,= — Sys,uv,,clﬁ(n) dn, so that F,and

I, may be called the zero and s Maclaurin constants for w, and ¢ (n), we shall have
the asymptotic approximation
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§ 77. Consider now, as an application of the general formula just obtained, the

o [/ 2\ .. .-
asymptotic expansion of 11 [j ( 1 - ,p» } , where o and p are real posttive quantities
==l | ny

such that ¥ 7777 1s convergent, and, therefore, such that p > o 4 1.
=1

With our former notation

/—L// = //7/0,

- i ,w -
X (m) = I o (it = par

h (L) = (P,

The constant g, arises from the asymptotic equality

iit—1 m s ” (._. Y, . J24+1

- i & ) Dy ,

S o0t = j e odn — A X o 117
" 2 im0 (2¢ + 2)t @mert 777

and, therefore, M = — x (¢,) = {(— o).
Similarly rsliuqb" (n) dn = — {(~ ps + o).

The constant y, arises from the asymptotic equality

a1 Cin mn® » (___)l Bl+1 (A1 ]
S oa log == ‘ nloon di — " logn SRS - (m log m).
X u” log | log el 5 108 v+ /ZO Ty (lm”‘““< 1" log m)

[PES Yo
- . B Yo } ,
We may rveadily show that | »”log n dn = { (— o).

For, as has been stated, for all values of s,

{ (Ls) — m}i‘:l L + - 1 + 20 <"" '5> (=B .
T T —sm! 2t o1 \ 20 ) (s + 24— 1)t
If, then, we put s = o + ¢, and expand each term in powers of ¢, we may equate
coefficients of similar powers in the identivy.*
If we equate coeflicients of the first power, we find

w1 oo . VR 2041
14 (0') I log » . e o logm 1 Tow § (=)Buyy @+ logm ,
- -~ - 9 T e (4] - P
pep R m” (1 — o)? 1 -0 2m” O o 20 20 dmPH om”

* Compare the process carried out in §§ 27 and 30 of the “ Theory of the Gamma Function.”

3 qQ 2
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or, changing o into ~— o,

-1

e O o (_yB d‘ll,‘+1
s nlogn = cloondn — ' (— — " o R AL,
;17 log n f n”logndn — ' (— o) 5 log m -+ E:O T Tl log m.

Thus

(Wn" logndn = { (— o).

We have, therefore,

log »,i[l <]- + ;ﬁ>n = C(“‘"’ o) 10% z 4 PC/ ("" 0‘) - 2 (—)f_l z(___ ps+ 0_)

s=1 sz
b (m)
1 s gl ot 5 o
;‘—i—‘i{ 20 te Lt [1 +R§wk<-—-) t:} .
The last integral is equal to
[pon))s : Wt
m)| e | B — ¢ (m)]|* ] |
,S"i,__,__.; Py A.Jff( i
o + 1 R o 1 §=—h Z (,j +
1 s+
[
o+l o1 g+1

N O [ S £

o+1 sin K,Lg_igl; ()

Thus we have the asymptotic expansion
Y _

o 5\ 72 w =1 TR e

1 1! < e L) g )k 3 ) D (pie) b s T ek
H1 [\1 4 n"/) } = 2D T I pita n S

= /

We note that the first term of this product vanishes when o is an even inteoer.
) o
§ 78. It is now possible to write down the expansion of

=1/ 2 \m
if(r+ 5.

N

where p, i3 algebraic and of the form a, n° 4+ a; n” 4 a, 2 4 ..., in which
o> o> 0y
For such a function is merely the product of the

a," power of 11 Rl - p> ],
nwe=l] ) 7

’ . g\
the (tlf,h power of Tl [( 1 -+ i ) , and so on,
=1 \
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We note that the constants which enter will be expressible in terms of the
coefficients of p, and values of the Riemann { function.

We might now investigate the asymptotic expansion of a repeated function of
finite order less than unity with algebraic sequence of zeros of the type

%=%”[1+ ot tp+ ]

where the quantities €, €, . . . are real, positive, and in ascending order ot magnitude.
The analysis is, however, such an obvious extension of the corresponding result of
Part I1I. that it may be at once supplied by the reader.

Repeated Simple Functions of Finate Non-integral Order greater than Unaty.

§ 79. We next consider the asymptotic expansion of the function

» 2 1 PRV
F(2) = 1[<1 -+ > L ‘ez;.) n} )
=

where p < p < p -+ 1, and p is such that
> aﬁ;;;'e is convergent, and 2 o divergent,

when e is a small real positive quantity.
The analysis is an obvious modification of that employed in § 66.

ISt

We find ¥ (z) = Fy2M e+ ¥ 5, where a, = ¢ (n), x (m) = j” o it

-1

A:].L;L-—-{,M;Ldn'}'M:"'%‘Huz"l"‘-'9

n=1

m—1

S o log ¢ (n) = Vp,t log ¢ (n) dn — log By — & pulog o (m) 4 ...,
=1

m—1

E,u,,gb( 7)== V,(L,Lqﬁ( Ydn 4 Fy— Z,M,ﬂd)( ) (5= (P11 1,2, ),

==

and S() =Lt (WX [ (—ze)] " sin (b 4+ 4§ ¢ A,

fmn VD - %mqu

§ 80. As an example, we may consider the function

-1 . o+ 1
F(z)=1 [/l 4 - > ,,; L m( ) ] where :}- is not integral, and p < "T: <p+1.

=1

- . . . .o 1
The order of the function ig ——.
T
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We have
=X (90) = &(— o,
=1 i - .
log I = — (2;] 7’ log i+ ( o’ log ndi — 7) wlog . =7 (o),

—F, = —{(~7s+ o)

L1

. . , o 2 .;_:r
And, as in§ 77, /() = L w(e+ 1) (o)
S111 - T,,,,,,.,

Thus the asymptotic expansion of F (z) may be written

ol
- R S o) W { Gt
26"('—-0-) e Sinw(g'—:l') 0-1;’1 e = s
Note that (O)* = — 4, (0)F = — § log 2m.

. 1 . .
Hence, when ¢ =0, 7= ~, we get the asymptotic expansion
P I

5

s
“ 2 Lo >77l . w1 low 2 g] (-’ §< p)
> — Y LT e o 2 e —
T 1 + 1 € =1 i =2 *esinmp B 1B ET s=—p 52 ’

=l ne

which agrees with the expansion of § 65.

Svmple Bepeated Functions of Fiwte Integral Order.,

§ 81, 1t is obvious from the investigations of §§ 7073 that the asymptotic expansion
. . ¢ . » B 2o\ Lo ( ) ‘ar)'uz, . . .
obtained in § 79 for 1 | (1 4 ) e 2w\ | where p < p < p + 1and pis such
" =1 | ty =

o

that x 7/
(ly

Lo 18 convergent, and 2 if,-'“";; divergent, will hold in the linit when p = p,
y, .

provided that in any terms which become iufinite we reject the infinite part and
keep only the corresponding finite expression found by applying the usual methods of
the calculus of limits to the subsidiary Fourvier and Maclaurin series.  Consider, for
exatnple, the function

LT

© / PN N N A > ] o 41
I {( l + ~7> e ';)L\j:l e ( ' }\ a3 \V],IUJ.'C = Z”
TR I '

T

The asymptotic expansion obtained previously was

* «'Theory of the Gamma l'unction,” § 27,
T Lbid., § 30.
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@ (Y7 ¢(momm
. o+ 1 . o "ﬂ 1
Now, when ~ - = p = an integer, -~~~ becomes infinite.
- = . w (o + l)

SN =
-

We have then to substitute a corresponding finite expression derived by proceeding

to the limit in the infinite terms of the subsidiary Fourier series.  When — is not

-3

integral, the series and its equivalent value are given by

C o s=1,— 50 5,50 0 +!
S - ¢ X e et T
S, (=) .+ > ( ) = -~ 1
o=1 \ ge=1 . o + L ]. + o
I 1 — snoar o
X 1 + 0‘/ T

1 1 + o .
When mteorﬂ this series, omitting the term for which s = mn the second

T

=t

summation, is equal to the finite part of

140
( ltad .. 7 g ()7 e ’
l+a 1 +0o 140
(-*)
when e = 0; that is to say, 1t 1s equal to
'{tl -1 9(T+,J / -9 T ) T 6
(=) e (=0 ) e
We thus replace
7t ( )'I_:‘_}
mw zZT — % T
— - by [ 1 —_ - b
sin (o + ]) o+ 1 ) 1+ o 1 08 # 1+ 0'}
in -

Again, since o is a positive integer, the only term of the form
{((—o—m8)s=—p,...—1,1,2 ...»

which becomes infinite is that for which s = — p.
This term is £ (4 1), which arises from the Maclaurin series

n-t ] 1 1 i , 1,
2 T O TS e T e S ey =

w1 T e’ 2m

We have alveady taken account of the substitution of log m for | s We need,
therefore, only replace ((-+ 1) by y.

We have then the asymptotic expansion
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' ol -
e z i o ’é I /—2\s
I 14 ) ¢ a()
=1 /

o+l
(—2) -

= 22" exp [7[' (— o)+ P {J_og 2 yr—, :: U}

+

§=1—
p

(=~ 5(““""“73)] ,

§28

. . 1 . o+ 1. . .
in which — and o are both integers, and is the ““ genre” of the function.
T T

"It is interesting to notice that the constants which enter into the asymptotic
expansion of this very general function are all values of the Riemann  function.

§ 82. When 7 == 1, the function is to an exponential factor an important function
which I have proposed to call the o-ple G function. These G functions are derived
from the multiple Gamma functions by the coalescence of the parameters. The theory
of the simple G function has been developed elsewhere™ in the second of a series of
papers on Gamma functions.

In that development I took

L. 3 N AV
G (= + 1) = (27").‘2 I | U] + > e " zf,J
l \

=

and obtained{ the asymptotic expansion

/ 2 \ 0)79 @ ( _)s [)\ f
. 9 AR T AR S B S S
log 2w+, = 2) logz =y + 20 show

«w

log G (z 4+ 1) =% —log A + .

N

[S

where A is the Glaisher-Kinkelin constant.
Putting o = = = 1, the asymptotic expansion which we have obtained for the
same function in the present paragraph is

9

2 2=+ 1) 2t ] 2 yz? 2
y log 2m — "0 0 — Wt {(—1)logz+ | logz 47, — o
: 2 (=) E(=s—1)
e 7 e - S AN S
+ (= 1)+ 2 o .
Now |

(=1)= iy LO)=—}
{(—s-—1)=0, when s is odd,

() By

2+ 2) when s == 24,

and

* <Quarterly Journal of Mathematics,” vol. 31, pp. 264 e seq.
t Zbid., § 15. I Lbid., § 23.
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And, since A is given by the identity,

;}:,] nlog n = log A + < —_ 7; + 3;LQ~> log m — 71 4+ terms which vanish when w is
infinite, we have log A = — ' (— 1) + 4%
Thus the asymptotic expansion of the present paragraph may be written
32

5 — log A + log 27 + <; - —1%5) log z — 4w

AESNCOR

=1 2s. 95 4 + 2 el

We thus obtain a valuable verification of our results.

Repeated Simple Integral Functions of Transcendental fndea.

§ 83. Tt is obvious that such a function as

[ —

v Doz
(1 4 ) o () J
= 1 AN
is of infinite order when «, is algebraic.
If, however, a, is of the same order as ¢”, the order of the functlon 18 finite, and can
therefore be expanded in the nelghbourhood of infinity by our methods.
We shall take, as an example of repeated functions of transcendental index, the

product
o\ P pan £ (2 m
( L+ "> oz ) l

e ]

II

n=1|_

This function is of order p, greater than or equal to unity.
Suppose first that p is not an integer, so that p is the integer next grecmter than p.
Then without former notation

m—1 engh
SR et = j e’ dn 4+ M — —- +

7 =1

m—1

m
3 et gn = ‘( e gndn — log Ty — L e gm + . .
n=1 v

m—1 ) mo oP s g
E e,mn+sqn — g e(p—!-s) an d)l — FJ —— +
n=1 2
And
. . 1o
f(z) — }ggg/“ Py - s erym + 1 ergn _+ 2/ N [( >§ {), u‘i”_l],
g P i gl se ps

where we take the limit when & = oo of the summable divergent series.
VOL, CXCIX,~—A 3 R '
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Thus
P loo % 1 1 /L . \s—1 g\ § 1 ]J,‘ _\s—1 /zfjm\s
I I G I A= ~NEay
o DI q P G o1 $ z | G s=—r 27+8 YR __I
Y
log z 1 i .
St e () @;}
’ 1 7 l”givﬂ-:z}:]jw P S ggm
Therefore _ —
re=
Pq sin
Again, M is given by
o an am o tP L 2t+2
¢ —C Lt & [1 4y g () By 27 1
1"‘3“ M rl'::ﬁ o 2+t::0 2t+2! _J. ’ ’ ’ ’ (>,
ea':n
= M + Py when o = pq.
Thus M= "

Also — F, is given by putting & = p + s ¢ in this same expansion.

Thus ‘ et
—F, =

Again, by substituting « 4 e for «, expanding in power of ¢ and equating
coeflicients of the first power of e in the asymptotic identity (1), we readily find

If, then, p 1s not an integer, we have the asymptotic expansion

© , Y \cqun DI 2 ( _z);;f} (1 ett)=1 gl . 2 (—y—lapts
—_— ) sin wp p] T .
Hl (1 + ey € st | ¢ R s(1-e 22+ )
n=1 | -

§ 84. Suppose next that p is an integer—so that p = p. The analysis will, of
course, be slightly more complicated.
The constant F_, will be given by

m~1 n
Lt { S el (p—s)}::. 5 dn — F_p - %
s=p n=1 .
or
m—1=m-—%—F

_p» 80 that F_, = §.
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And we shall have

2@ __logz m? LS (=) ( A B b /ﬁf’i’y
erim T g + + (=) epim orn T q E_k s\ z QE-;; p+s (\ z) )’

the double dash denoting that the terms for which * = 0 } are to be omitted.

We therefore have

P/ _ logz 1 ma (=Y [z \
orgin - [ m + pq+( ) erIm V2 ()qm

[z 2\ 1 g>
[ "o o < ), 108 <g,;;;/] :

) — (;_X? o 5 - ’(.._.._)p_» »
f(z) = o ? log # 4 27

Therefore

We thus have the asymptotic expansion

e N » A )7710 s (=)D Ep(é‘ (,.)1”‘122’
m . g ," g _mET e\
[<1 + w> e e 2z~ (=) ey ] 7(1_31"1)2*' 2p
n=1 |,

0201 (- )g 1 r](p-{—s)
X es_—-,a+ls(l 59(;’+8)) s .

We have now given examples of the asymptotic expansions of repeated simple
functions with transcendental index in the cases when the order is or is not integral.

And 1t is evident that such examples might be multiplied indefinitely. In the
more complex cases the difficulties of the analysis will, no doubt, be very great; but
such difficulties in no way invalidate the theory which has been developed.

Parr V.
Applications of the Previous Asymptotic Expansions.

§ 85. We proceed now to consider some applications of the previous theorems to
such questions concerning integral functions as have been raised in the Introduction
to the present paper.
~ In the first place, a knowledge of the asymptotic expansion of a func’mon serves to
determine the number of roots which it possesses inside a circle of given large radius.

Let us consider the simple example of the Gamma function, for which we have the
asymptotic equality

1 , ! )
(o) = (2m) "t exp {yz + z

By 1
02 + 1.20 4 22041 [ 7

3R 2
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in which the terms neglected on the right-hand side are of lower exponential order
than those retained.

By Cavcny’s theorem. the number of roots N within a circle of given large radius
7 is determined by

1
N = 5 5 i log I (z) dz,

the integral being taken round the circle in question.
Now we may, to terms which vanish exponentially mth -, substitute for I'(z) its

value given by the asymptotic expansion. And this expansion is valid for all values
of z for which — 7 < argz < It is also valid right up to the two limits of arg z,
provided the circle on which z lies passes between two consecutive zeros of F(;} .

. . . . . 1
If, now, z = re”, we have, to terms which vanish exponentially with )

1 " ~—L9 ( )l 4("1‘+")L9 L()

Now
— 0 e L - L o0 }
S| seran =7 {L e ] [ era

—
— |
=5 {me™ 4 e}

Therefore, to terms which are ultimately exponentially small,
N=r-+45%L

Of course we know independently that /
the number of roots is the greatest integer /
less than .  And the entrance of the '
term 4 might have been predicted a priore,
for when the circle of radius 7 passes

(SR

1 . ;
through a zero of I‘() we jump from -— %
to + 4 as we integrate round a small "

circle enclosing this zero. "~ ]
§ 86. It is interesting to notice that the analysis verifies itself in the same way for
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the function F (2) = i ‘-1 + ; l], which, by a change of the independent variable,

=1
reduces to LAMBERT's function.
For this function we have obtained the asymptotic expansion

8z’

log F () = § (log 2 — 4 log 2 47 + £ 720
s=1

Therefole e l()(r F(z) = 10*5 91 + 2 (*;)fl

L

.The number of roots within a circle of radius #» is, therefore, to terms which are
exponentially small when » is large

1 ™ lou
I j’ { 0«%) —0 + ( e lg } re? 1df = 10g - %

2are ) »

Since the function has no zero at the origin, we should have predicted the occurrence
of the term — 4.

§ 87. We may now prove that, if the dominant term of the zero of an integral
function is algebraic and such that the zero is of non-integral order p (where p is
neither zero nor infinite, but greater or less than unity), then the number of roots of

the function within a circle of large radius = is to a first approximation

sin mp .
—log ¢ (r),

where ¢ (1) is the maximum value of the modulus of the function on the circle in
question.

There are two cases to be considered according as p is greater or less than unity.
We take the former, the argument will hold in detail for the latter by changing p

. 1
mto —.
p

Let F (z) be the function in question; then, under the conditions enunciated,

S1n

log F (2) is equal to . WW; # 4+ terms of lower order.

Hence N, the number of roots required is, to a first approximation, given by

sin 7p
iy

N = r TPy opt ) = g0 = og ¢ ().

—» 8in 7Tp

We thus complete and prove BorkL’s intuition.
§ 88. When p is an integer, the preceding tl heorem ceases to be valid. But we can

lug_, b (7)
log »

{‘)

now prove that the number of roots to a first approximation is
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For, the same conditions still being supposed to hold good, log I (2) has to a first
approximation been proved to be equal to

P L
(=—2)7logz 4 (=)t 4+ (—%l-—/ 2P -4 lower terms.

4
And therefore

1
(;; log F (2) = (—)? pzr~"log z -+ lower terms.
Hence, to a first approximation,
N =— r p (=) e r? [log » - o8] v do

= ( —_— 7«)77 g;r (1” e’ G4l == P == 19%(;;%?(7),
which establishes the theorem in question.

§ 89. In the two preceding paragraphs we have assumed that we were dealing
with non-repeated functions.

From the analysis of Part IV. it is, however, evident that the theorems hold
wn toto for repeated functions, the order being that which has been assigned to such
functions. '

We cannot, of course, attempt to prove the theorems for functions of multiple
sequence until we have investigated the corresponding asymptotic expansions.

§ 90. We may next write down a number of theorems relating to two or more
integral functions.

1t is obvious that the sum of two or more integral functions of simple sequence is
an integral function of order equal to the largest order of the component integra.
functions. We may replace additive signs by those of subtraction if the two
component functions of largest order are not identically equal. The large zeros of
the compound expression are to the first order of approximation equal to the large
corresponding zeros of the component function of largest order.

The product of two or more integral functions of simple sequence is an integral
function of order equal to the largest order of the component integral functions.

The number of zeros of the equation

Iy () By (2) + By (2) By (2) + . .. + 1, () B, (2) = 0,
where the F’s are integral functions of simple sequence and the /s algebraic
polynomials, within a circle of large radius is ultimately to a first approximation
equal to the number of zeros within that circle of the function of largest order.
§ 91. The expansions which have been obtained may be utilised to give a proof of
Borer’s extension of a theorem due to Proarn.*

* PrcArDp, ¢ Annales de I'Fcole Normale Supérieure,” 2 ser., t. 9 (1880). Borgr, ¢ Acta Mathematica,’
t. 20, pp. 382-388.
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The identity

in which the G's are integral functions of simple sequence of any finite or zero order
not greater than some number p, and the functions H, — H, are polynomials of order
greater than p or transcendental integral functions, necessarily involves

G () =Cy(x) =... = G, (2) = 0.

Since the identity holds for all points in the plane of the complex variable z, we
may consider it in the neighbourhood of 2 = .

Suppose first that the G’s are functions of simple sequence of non-integral finite
order.

If p, be the order of G, (2), we shall have near z = o the identity

n AR NS HON

S e sinp, =0,

=1
where we have neglected in each term terms ot lower exponential order than those
retained. ‘

The identity will hold for all values of arg z such that z is not within a finite
distance of the zeros of the G’s. ,

The functions H (z) by hypothesis cannot be equal to one another. As z tends to
infinity, one of them must become infinite to an order which exceeds the order to
which all the others become infinite by a quantity of order greater than 2.

The corresponding term (say) G, (2) ¢"® is then infinite to an order greater than

the order of any other term of the identity s G, (2) ¥ = 0.
t=1
Since ¢"® cannot vanish, we must then have G, (z) = 0.
The same argument may now be applied to the identity s G, (z) " =0, and it

may be proved successively that all the functions G vanish.
And thus the theorem will be proved.

When any of the quantities p are integral, a suitable modification of the formulee
in accordance with §73 shows that the theorem is still true. When the G’s are
repeated functions, a corresponding modification again establishes the theorem.
When the functions G’s reduce to constants ¢, so that p = 0, the theorem is still true,
the functions H being unequal.

§92. We pass now to the consideration of the resemblance between an integral
function of simple sequence and its derivative.

And I would remark that, in the same manner as RoLLr’s theorem is proved, it
may be established that the real zeros of such a function with real coefficients are
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separated by zeros of its derivative. [It cannot, however, be proved that the derived
function has not other real or a (necessarily even) number of other imaginary zeros. |
This theorem I shall not prove, as it is not connected with the main developments of
the present paper. We proceed, however, to show that such developments complete
and to some extent verify this extension of Rorrw’s theorem, and that incidentally
they furnish many criteria as to the nature of the derivative of a given integral
function.

§ 93. Let us consider, as an elementary example, the function of genre zero and

1
order —,
P

P, () _—_-310‘31 [1 + ni"-!’ where p > 1.

2= 1

We have the asymptotic equality

o A (=) F (s
P, (2) = (2m) 2 exp. | - "T’f} w4 Y f-_l-;,, (ps) l'
sin - s=1 i |

!

Remember, now, that it has been proved in Part IL. that we may differentiate an
asymptotic equality of this type, and we obtain

“p (2) = (20r)~% 27  exp { an; = 4 },( ST } + .. }

dz P .
sin ~
[)

1+ 1 o - .
= (277)"5 T exp J - T 4+ ... | together with terms whose ratio to the terms
sin ™ sin 7

P P

retained tends to zero as |z| tends to infinity.
From this expansion we see that

(1) P, (z) is of the same order as P, (2),

7

(2) The zeros of P/ (z) are such that, when n is large, we have with the usua
notation a, = n* 4 (p — 1)n*~* 4 lower terms.

Not only so, but theoretically, by finding successive terms in the expansion for
P, (z), we ought to be able to determine the form of its n'" zero as nearly as we
please. Practical difficulties will, of course, arise when we come, in the asymptotic
expansion, to a term which arises from a transcendental term in the n™ zero of P (2).

Note that the formula for ¢, may be readily verified when p = z.

® 2’ ginh 7w/ 7
For i1 [1 + ";J = ' v 5
=1 i 'IT’»\/?J
S

cosh 4/ sinh wy/2 __ V" em's .
and, therefore, P, (z) =1 :'N L~ JETVE o T e asymptotically.
#P ] 2
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The large zeros of P.’(z) are approximately those of cosh wv/z and the latter are
such that, with the usual notation, a, = n®* + n + 4.

We notice that the general form of «, given above shows that the large zeros of
P, (2) separate and are separated by those of P/(z), a fact which agrees with the
extension of RoLLE’S theorem. ,

§ 94. From the preceding example it is now evident that we are in a position to
prove that, for all the types of integral functions of which asymptotic expansions
have been obtained in this memoir, the order of the function is equal to the order of
its derivative. And not only so, but we are theoretically in a position to determine
as nearly as we please a formula for the (large) »™ zero of the derivative. It would
be tedious to consider in turn all cases which can arise: we will take one or two as
typical of the rest.

As an immediate corollary of the preceding echmple it may be seen that the

derivative of a simple non-repeated function of order - less than unity with algebraic

zeros of the type a, =n* + On*~! 4 ... is a similar f'unctmn of equal order, whose
zeros are typified by b, = n* 4+ (0 + p — 1)~ 4. ..

§ 95. As a suggestion of the possibility of extending the expansions of Parts III.
and IV. let us next write down the first few terms of the asymptotic expansion of

o 24\ —mey 4P era” . . .
P(a+2)=logll [(1 -+ w——) o Dol ], where « i1s any quantity of finite
1 B .
modulus, and «, = n' [1 4 4+ o -|— e - S ]

The expansion will be (§ 68)

(2 + ay —tlog (z4a) — = 10g o + 3 = g <—§~\

sin 7p s=—p S (2 + ) P/
_ sin o pb, ol=-ey 4 P(p + 1 — 2pe) p(1=2¢,)
Slnvrp(l—e)(z+a) + 2 by sm'n'p(l——Ze)(z-l_a')

sin 7 pb,

Slllﬂ'p(l - e)

—Z(O, ZZ;;)

- X ('—)s”l ' €), €« A
(I-e) ’ .
(Z+(M)p + +s=2~ps(z+a)sz<P’S’ blsz"'}

and may be transformed into

™

2 —4%logz — ;)1— log 27 + 3/ =" g (%) 4 IPT e

sin T p 2p s=—p S& S 7 p

. '+7(—-)1° P~ aF <-—- 2;—)

plp—Dm o @
‘%t ... =3

sin 7p z

[( yp 21 a2F< >+( = aF(

VOL. CXCIX.,—A. 38

- 1>]z1"2 + ... [OVER.
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7"Pb P e T’y (1 — 61) a1
" sin mp (1l — €) sin 7rp(—- ]) o
+P(p+1‘-261)b 7r oo (1= 2e]>+P o+ 1= 2) (1 —2¢) qgzr 20!
2 ’ sin 7p (1 — 2¢;) 2 sin wp (1 — 2¢,)
T e p (= 1 . b &
sin 'rrp(]_—-en)7 +e_2_p 52 AGEE by, 0y

_ G _\p -1 o e
Z<O’bbbz--‘>+( y# "’Z<”’ p’bl,bg--.)J““

By the employment of extended Riemann { functions of parameter a, it is impossible
to give a form of this expansion which shall include all powers of «, analogous to the
expansion of log T (z + @), which involves BERNOULLIAN functions of a as coeflicients.
For brevity we content ourselves with the preceding first approximation.

§ 96. By differentiating the expansion for log P (z), given in § 68, we have at
once, as 1s evident by the preceding paragraph,

,P’ (Z) —_ TP e 1, P gp—1 (:_29
P (2) %in'n-p'é oo + (=)= F\p>+”
Wpdb (1 - 61) 0(1—61)——1 —_ WP Z) (1 . e”) p(l—e)~1 __

" sin TP (1 _ 51) sin 7p (l o e.ﬂ
\pap-1 € €\
+( )z Z(p, - pP; bl,bm--->

Thus the asymptotic expansion for log P’ (z) is given by

z* + ( _ 3 log z — S log 27 + log —F— 4 s (=™ F(->
sin 7 p P 2 8 7 2p & 8 sin sinmwp =z, $2° p
'”'Pbl Zp (- P(P + 1 2P€1) T p(1=26) __
~ sinmp(l — 61) + 2 b sin mp (1. — ¢,) #

+ 3 (=) Z (p, s Zl’ 22 o > Y/ <O; Zl’ 2” o / + terms involving positive
1 Y. i8]

s=—p %'
{fractional) powers of 1/z.

Thus 7(;; P (%) is a function of the type
n=1
where b, = n' l:l + + =+ ] — ' [ﬂp:nl + higher powers of %J :

Thus the differential of an integral function of order p (> 1), where p is not
integral, is itself an integral function of order p whose n™ zero, when n 1s large, will
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o . : -1

differ from the corresponding zero of the original function by the term — P
together with terms involving lower powers of . '
In an exactly similar manner it may be proved that the function R’, (z) admits

an asymptotic expansion of which the dominant term is

(= oo exp {(=p T 4 loglog 2 — 5 log 2w+ ¥ U E(2]

s==p

so that R, (2) is of integral order p.

The term log log z in the exponential just written down shows that we shall come,
sooner or later, to a transcendental term in the expansion of the 2™ zero of R/, ().

Similarly the theorem may be established for the general simple non-repeated
function of finite integral order.

As regards the application of the same methods to simple repeated functions it is
only necessary to notice that corresponding to a zero k times repeated of the original
function there will be a zero (k — 1) times repeated of its derivative, '

§97. We have now to consider whether the derivative of an integral function, all
of whose roots are real, can have zeros other than the real zeros which by the
extension of ROLLE’'S theorem separate the roots of the original function.

For this purpose let us consider the difference between the number of roots of P (2)
and of P’ (z) within a circle of very large radius r.

my. e . 1 , 7
This number will be N = .)J;T‘LJ‘{(_Z: log P’ (2) — (@ log P(z)} ds
= (%” L;:, log 11)) <( )) dz, where the integral is taken round the

circle in question.
Now by examining the various cases which can arise, it may at once be seen

that the asymptotic expansion of gz log 11’((;)
Therefore to a first approximation we have N = p — 1.
If then the function P (2) is of genre p, its derivative can at most have only p zeros
besides those demanded by the extension of RoLLE's theorem, ,
And therefore when p is odd, P’(z) can at most have only (p — 1) imaginary roots.*
In particular when P (z) is of genre 0 or 1, P’(z) can have no imaginary roots.t

From this theorem coupled with the expansion given in § 5 and the equality

is given by (p — 1)log z 4+ terms which

Adn@ _ _ Jun(?)
dz = @ 0

* BoREL, ‘ Fonctions Entiéres,” p. 44.
T LAGUERRE, ¢ (Buvres,’ t. 1, pp. 167 et seq.
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Jn+1 (Z\» . Iy (Z>
we see that all the zeros of —~ "= are real if' the zeros of ~~= are real--a theorem

due to MAcpONALD.*

If the function P (z) be multiplied by an algebraic polynomial with real coefficients
whose degree is ¢, the derivative of the product can at most have only p 4 ¢ imaginary
roots.

§ 98. So far we have only considered integral functions whose roots are all real and
~negative. If, however, we have an integral function all of whose roots lie along
a line other than the negative half of the real axis, a change of the independent
variable will at once reduce it to an integral function all of whose roots are real and
negative.

If then an integral function of genre p have all its roots but ¢ lying in a sequence
along a straight line through the origin, its derivative will at most have p 4 ¢ roots
which do not lie along this line.

§ 99. We now conclude for the present the applications of the expansions which
have been obtained. There are many questions which are still to be discussed—for
instance :—

(1) Functions of infinite order ;

(2) Functions of multiple sequence ;

(8) Asymptotic expansions deducible from linear differential equations ;

(4) The rate of increase of the coefficients of the TAVLOR’S series expansion of an
integral function ; and so on.

Investigations in connection with each of these questions have been tentatively
undertaken—notably by Borer, HorN, Hapamarp and PorNcart. And I find it
possible to extend, by the methods of this memoir, many of the results which have
hitherto been obtained. But such investigations I leave for future publication.

* MACDONALD, ¢ Zeros of the Bessel Functions,” ¢ Proe. Lond. Math. Soc.,” vol. 29, p. 575.
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